Race to the bottom? Local tax break competition and business location

Evan Mast†

October 29, 2016

Abstract

I analyze how competition between localities affects tax breaks and business location decisions. Using data on firm-specific property tax exemptions, I begin by documenting that spatial competition substantially increases local tax breaks. To do so, I exploit variation in the number of counties near a town, which is correlated with competition but uncorrelated with other observable town characteristics. I then use this pattern to estimate a model of localities competing for mobile firms by offering tax breaks. In counterfactual exercises, I find that policies that reduce competition between localities, such as restricting which levels of government can offer tax breaks, have very little effect on equilibrium firm locations but may lower total exemptions by up to 30%. These findings suggest that local tax break competition primarily lowers the tax rate on mobile firms and is unlikely to substantially affect the efficiency of firm location.

*I am grateful to Liran Einav, Caroline Hoxby, Luigi Pistaferri, and Joshua Rauh for guidance and support. I also thank Jose Barrero, Nick Bloom, Tim Bresnahan, Arun Chandrasekhar, Rebecca Diamond, Mark Duggan, Matt Gentzkow, Atul Gupta, Ray Khender, Brad Larsen, Jon Levin, and Stephen Nei for helpful discussion and comments. I received financial support from the Ric Weiland Graduate Fellowship and the E.S Shaw and B.F. Haley Fellowship.

†Department of Economics, Stanford University. Email: emast@stanford.edu.
1 Introduction

Governments in the United States spend approximately $100 billion each year on programs that encourage economic development in a particular geographic area (Kline & Moretti 2014a). These programs, often called place-based policies, typically offer tax breaks in an effort to attract businesses or encourage the expansion of existing businesses. They range from huge subsidies for large factories to policies that target small businesses on a single city block. A crucial feature of place-based policies is their decentralized administration—state and local governments account for 80% of total spending. Since these subnational governments prioritize welfare in their own jurisdictions, strategic interactions may be important for what tax breaks are offered and where businesses locate in equilibrium.

I study two potential effects of decentralization in business tax breaks. First, competition between subnational governments could increase total tax exemptions. Second, local control of tax breaks could lead to more efficient firm locations if jurisdictions with high social surplus from landing a firm offer larger tax breaks and become more likely to attract the firm. The magnitude of these effects is important for evaluating policies that restrict which governments can offer tax breaks, such as proposals to ban state exemptions1 or the recent moratorium on some local exemptions in the Phoenix metropolitan area.

Using data on firm-specific property tax breaks given by towns and counties in New York State, I first document that competition between nearby jurisdictions does indeed increase tax breaks. An additional competitor within 25 kilometers of a town leads to a 20% increase in the probability that some business in that town receives tax exemptions, as well as a substantial increase in the total exemptions businesses in the town receive. In order to study firm location, I then use this pattern to estimate a model of towns and counties competing for mobile firms with tax breaks. In counterfactual exercises, I find that simulated firm locations change very little across three policy regimes, in which towns and counties, only counties, or neither are allowed to offer tax exemptions. About 85% of firms locate in the same town across all three simulations. This suggests that decentralization generates at most small gains in the allocative efficiency of firm location.

1See Rolnick and Burstein (1995), Funkhouser (2013), and Badger (2014) for examples.
I begin in Section 2 by broadly describing local economic development programs in the US. Local tax benefits may be quite important to firms, as state and local taxes represent a large portion of the total business tax burden—approximately $688 billion in 2014, compared to total federal corporate income taxes of $320 billion. I then move to my specific setting—Industrial Development Agencies (IDAs), the primary local economic development agents in New York State, and present summary statistics. IDAs offered $660 million of firm-specific exemptions on local property and state sales taxes in 2013. Each of the state’s 56 counties has an IDA, which may offer tax breaks to businesses in any town within the county, and 51 towns have established a separate IDA that focuses on their community.

In Section 3, I introduce a simple model of towns offering tax breaks to attract mobile firms. Firms have preferences over locations, but also value tax breaks. Towns choose a tax exemption to maximize their expected value from a firm, which depends on the probability of landing the firm and their social surplus (net of tax exemptions) if they do land the firm. In this framework, competition increases exemptions, and a policy regime that allows towns to offer tax breaks can lead to a more efficient set of firm locations than a regime which does not.

Under the restriction that firms consider locations in a constrained geographic area, the model generates the intuitive prediction that towns near more IDAs will have more tax break activity. In Section 4, I test this prediction empirically in order to provide both support for the model assumptions and model-free evidence on the effect of spatial competition. OLS estimates of the relationship between exemptions in a town and the number of nearby IDAs are likely to be biased if a town’s decision to establish an IDA is influenced by local economic conditions. For example, if towns that are struggling fiscally are more likely to have an IDA, spatial competition may be correlated with poor economic conditions and associated unobservable characteristics. I use the number of counties near a town as an instrument for the number of nearby IDAs in an attempt to circumvent this problem.

The number of nearby counties is correlated with the number of nearby IDAs both because every county has an IDA and because towns near more counties are empirically more likely

3Office of Management and Budget, Historical Tables; www.whitehouse.gov/omb/budget/Historicals/
4New York municipalities may technically be cities, towns, or villages. I refer to all as towns.
to have their own IDA. The validity of the exclusion restriction is less obvious and depends crucially on the inclusion of county fixed effects. With these fixed effects, the identifying variation corresponds to differences in the number of nearby counties across towns within the same county. This is driven mostly by whether a town is in the center, on the edge, or near a corner of its county. This variation appears to be idiosyncratic, as the number of counties near a town is uncorrelated with characteristics such as population, property value, and number of business establishments after conditioning on county fixed effects.

Using this instrument, I find that an additional IDA within 25 kilometers increases the probability that at least one business in a town receives tax exemptions from 28% to 33% and increases the total dollars of exemptions to businesses in the town by over 50%. The effect rapidly fades out as the radius of competition extends beyond 25 kilometers, suggesting that competition is very local. This result is robust to dropping the greater New York City area, the Buffalo area, the Albany area, or the sparsely populated area north of Albany. I also show that the number of IDAs nearby has a larger effect on local property tax exemptions than on state sales tax exemptions or exemptions on other non-local taxes, suggesting that IDAs mainly compete on local taxes.

In Section 5, I parameterize and estimate the model presented in Section 3. Firm profits depend on tax rates (net of exemptions) and geographic distance from a preferred location. Because survey evidence suggests that attracting jobs and growing the local tax base are priorities for most towns, town valuation of a firm is a linear function of its realized property value and full-time equivalent employees. I estimate the model by indirect inference, using the coefficients on IDAs within x kilometers from the IV regressions described above as the matched auxiliary model, for $x = \{25, 30, 35, 40\}$. These regression coefficients show how IDA behavior changes with exogenous shifts in competition and how that effect changes with the distance to competitors—patterns which identify the model parameters.

Parameter estimates from my preferred specification imply that firms are indifferent between a 1.6 mil (.16 percentage point) reduction in their property tax rate and being one kilometer closer to their preferred location. This limits the effect that property tax breaks can have on location. Because the average total property tax rate is about 29 mils, firms cannot be induced to locate more than 18 kilometers from their preferred location, even if
they are exempt from all property taxes. Towns value a firm at its assessed property value multiplied by .29, which is roughly ten years of property tax revenue from the project, and its full-time equivalent employment multiplied by $45,000.

Finally, in Section 6, I use the estimated model to simulate two counterfactual policies—eliminating town IDAs and eliminating all IDAs. Focusing first on firm location, I find that firms typically choose the same location across the two counterfactuals and a status quo simulation, limiting the size of potential allocative efficiency gains. The town most likely to land a particular firm is the same in every policy regime for about 85% of firms. This result occurs not only because firms are relatively inelastic to tax breaks, but also because of equilibrium IDA interactions. For example, suppose that Syracuse is attractive to a particular firm and has a very high probability of winning when no tax breaks are allowed. Under the status quo regime, in which all IDAs are active, Syracuse will offer an exemption large enough to stay ahead of the competition and maintain a high probability of winning. This behavior causes firm location to stay the same across policy regimes. Turning to total tax breaks, I find that eliminating the 51 town IDAs would lower exemptions by about 30% by decreasing the number of competitors for the average firm, while a ban on tax breaks obviously reduces the total amount of exemptions to 0.

While the baseline model imposes a common value for a firm across towns, I allow heterogeneity in valuations across towns with different poverty rates in an extension. I find that firm movement across counterfactuals remains quite low and that the improvements in allocative efficiency from decentralization are trivial relative to the associated increase in tax breaks. The average town surplus from a firm is approximately $50,000 higher in the status quo regime than under the exemption ban, while the average total exemption increases by over $1,000,000.

Examining the alternative parameter values that would lead to more firm movement across counterfactuals helps to clarify the patterns in the data that drive my results. Had I estimated that tax exemptions were more important to firms, there would have been much more firm movement across policy simulations. For example, when their tax breaks are more powerful, the town IDAs included in the status quo regime are able to greatly alter firm location relative to the exemption ban or county IDA regimes. However, these
alternative parameter values do not match the data. In particular, if tax exemptions were so important, IDAs from further away would be able to exert competitive pressure, and the observed coefficients on the number of IDAs in 35km and IDAs in 40km in the IV competition regressions would be much larger. These regression coefficients thus largely drive the result that firm location is very similar across policy regimes.

An important caveat to my results is that the model is best suited to firms that are relatively spatially constrained in their location choices, such as retail and services establishments, distribution centers, or small local manufacturing ventures. In the body of the paper, I show that businesses in my sample tend to be relatively small and are frequently in the retail and services sectors, suggesting that they are likely geographically constrained. I also present survey evidence suggesting that many firms search within a local area. However, several issues could arise if many firms conduct national or statewide searches. In this case, the model would be misspecified, as important bidders and elements of the firm choice set would not be included. I would additionally face a selection problem, as I would not observe the firms that bargained with IDAs and subsequently did not locate in the state. This would cause my reduced form results to be biased towards the effect of competition for firms conducting only a local search. In an extension where this issue may be less concerning, I estimate the model on a sample of only retail and services firms and find counterfactual results very similar to the full sample estimates.

This paper is most closely related to the literature on firm-specific tax breaks, which has pointed to both the effect of competition on exemptions and various channels through which decentralization could improve allocative efficiency. I build on the prior literature by empirically testing theoretical predictions about efficiency, by attempting to identify the causal effect of competition on exemptions, and by simulating how policies reducing competition would affect tax breaks.

Several theory papers highlight the potential allocative efficiency gains from firm-specific tax exemptions, including Black & Hoyt (1989), Bartik (1991), Garcia-Milá & McGuire (2001), and Fumigalli (2003). Additionally, Martin (2000) and Menezes (2003) make this point by applying auction models with heterogeneous town valuations of firms, a framework similar to this paper. Turning to the effect of competition, Martin (2000) derives a posi-
tive relationship between the number of jurisdictions competing for a firm and expected tax breaks, while Holmes (1995) shows that a ban on state tax breaks could be welfare-improving. The previous empirical evidence on local competition and firm-specific tax breaks—which includes Anderson & Wassmer (1994), Edmiston & Turnbull (2003), and Cassell & Turner (2010)—documents a positive correlation but has not identified a causal relationship. Similarly, Felix & Hines (2013) find that localities near a state border are significantly more likely to offer tax breaks, likely because of increased competition.\footnote{More broadly, there is a rich literature on fiscal federalism and intergovernmental tax competition. This literature typically considers base tax rates with homogeneous firms and towns, rather than specific tax breaks from heterogeneous towns to heterogeneous firms. Many theoretical papers, reviewed in Wilson (1999), have considered tax competition under a variety of frameworks and have come to diverse conclusions about whether it leads to efficient outcomes. Economists have also empirically studied competition in base sales and property tax rates, as reviewed in Brueckner (2003), Agrawal et al. (2014), and Revelli (2015).}

Perhaps the most closely related paper conceptually is Ossa (2015), who considers tax break competition between states using aggregate data and a macro/trade framework and finds that tax breaks significantly distort manufacturing output. While we ask similar questions, my study differs from his in several ways. I use micro data, model individual firm decisions, and primarily consider local competition. In contrast to his findings of relatively large distortions from state tax breaks, I find at most small changes in efficiency from local tax breaks. This difference could result either from different methodological approaches or from differences between the local and state settings.

While I focus largely on the government decision to offer tax breaks, I also consider how tax rates affect firm location. A full review of this literature is beyond the scope of this paper, but several recent papers, including Giroud & Rauh (2016), Suárez Serrato & Zidar (2016), Chirinko & Wilson (2008), and Moretti & Wilson (2016), suggest that firm locations are elastic to tax rates, though the estimated magnitudes vary. Given that taxes affect location, a natural question is whether state tax rates distort firm locations, and Fajgelbaum et al. (2016) use a trade framework to find the potential for substantial efficiency gains from tax equalization across states. I contribute to this literature first by using a novel identification strategy to find that, within a model of geographically constrained search, firms can only be induced to move short distances by discounts on property taxes. I also find that, although firms value tax exemptions, equilibrium interactions between localities typically prevent tax
breaks from changing firm locations, resulting in minimal efficiency changes from tax breaks.

Finally, this paper contributes to the literature on place-based policies, including Kline & Moretti (2014b), Busso et al. (2013), and Greenstone et al. (2010), which has typically evaluated the effect of specific policies on local and national employment, productivity, and welfare. I focus instead on the government decision to implement policy.

2 Setting and Data

2.1 Local economic development and tax breaks in the US

Governments across the US care deeply about local economic development and employ a variety of strategies to attract and retain firms. In surveys conducted by the International City/County Management Association, local governments most frequently list attracting jobs, increasing tax revenue, and improving quality of life as their primary development goals. To pursue these goals, they provide not only tax breaks, but also infrastructure improvements, expedited permitting, utility rate reductions, specialized job training programs, and reduced interest financing. Some local governments handle economic development in house, while others are represented by nonprofit economic development corporations.

Anecdotally, competition between governments is a strong force in economic development decisions. In the 2014 wave of the ICMA survey, 60% of responding governments reported strong competition in their region. The 2009 wave of the survey suggests that a substantial portion of this competition comes from neighboring localities, as 80% of respondents stated that nearby municipalities were competitors, while only 50% said they faced competition from other states and 20%, other countries. Similarly, Kayser and Goetz (1993) survey municipalities in the Minneapolis-St. Paul region and find that they most frequently list immediate neighbors as their strongest competitors.

Firms form the other half of the economic development picture. Site Selection, a corporate real estate magazine, surveys firms and site selection consultants annually on the factors most important to location decision. Tax breaks and business climate consistently make the list.

6 These surveys may be found in the January issues of Site Selection.
but three other factors typically rank ahead: local labor force, transit connections, and proximity to customers and existing operations. One executive referred to tax breaks as a tie-breaker, while another referred to them as “icing on the cake.” The reports suggest that while tax breaks can sway firm decisions, they do not outweigh factors crucial to operations.

In this paper, I primarily study exemptions on local property taxes, which are a substantial proportion of firm’s total tax burden. According to a report from the Council on State Taxation, businesses paid $250 billion in property taxes in 2014, 36% of the total $688 billion businesses paid in state and local taxes. For comparison, the Office of Management and Budget estimated that federal corporate income taxes totaled $320 billion in 2014.\(^7\)

2.2 New York Industrial Development Agencies

I study local economic development in New York State, focusing on the tax breaks offered by Industrial Development Agencies (IDAs). IDAs are local economic development agencies that represent either counties or towns and may offer a variety of tax exemptions to achieve their goal of “[improving] economic conditions in their respective areas.” There were 107 IDAs active in 2013, composed of 51 representing towns and 56 representing counties.\(^8\)

These agencies have a complex set of objectives and may play different roles in different communities. Apart from common goals like creating jobs and growing the tax base, they are anecdotally concerned with everything from attracting better shopping options to a rural area to bringing business back to an old industrial park. IDAs support a diverse array of projects, ranging from the large Beech-Nut baby food plant in Amsterdam to the Premier Liquor and Wines outlet in Amherst. A local government-appointed board of 3-7 people, typically community business owners or government officials, manages each IDA. Agencies must hold a public hearing before offering tax breaks but otherwise face few restrictions.

IDAs make firm-specific agreements—the Beech-Nut plant may receive quite a different package than the liquor and wine outlet—and may offer several types of tax breaks. They can exempt some or all of a business’s property tax liability for each jurisdiction—municipal,

\(^7\)OMB, Historical Tables: Table 2.1; http://www.whitehouse.gov/omb/budget/Historicals/

\(^8\)There were additionally two IDAs that either gave no exemptions or did not report data to the state comptroller from 2010-2013. I classify these IDAs as inactive. My results are not sensitive to this exclusion.
county, and school—collecting property taxes in New York State. These are usually the largest exemptions and are typically issued in 7-15 year schedules. For example, a company may pay 50% of its property tax liability in the first year of agreement and then gradually see exemptions fade out over the next nine years. IDAs may additionally exempt state and local sales taxes on a company’s purchases, as well as a one-time county mortgage recording tax (equal to about 1% of a property’s value).

IDAs may also confer state or federal income tax exemptions on bonds issued by a firm. Interest on these bonds is exempt from income taxes, enabling firms to offer lower interest rates and obtain cheaper financing. There is a statewide limit on how many bonds may receive federal exemptions from IDAs, but no such limit exists for state tax exempt bonds.

Each town has the ability to establish an IDA or to dissolve their existing IDA, making agency location endogenous to economic and political conditions. If a town does not have its own IDA, it is represented by its county IDA, which may exempt taxes for businesses in any town within its borders. While county IDAs are spread evenly throughout the state, with one in each county, town agencies cluster in metropolitan areas, especially around Buffalo and Albany. IDA locations in 2013 are shown in Figure 1. Interviews suggest that county IDAs generally represent all the towns in their jurisdiction that do not contain an IDA, while town IDAs are concerned only with their own jurisdiction.

In 2013, IDAs supported 4,709 projects with a total property value of $76.8 billion. In that year, these projects jointly received $660 million in tax exemptions, amounting to $34 per capita statewide. They additionally conferred state income tax exemptions on approximately $1 billion of newly issued bonds in each year from 1998-2013. I present more detailed summary statistics in Sections 2.4 and 2.5. Section 1 of the Appendix provides more details on IDAs and their legal powers.

2.3 Data sources

The Office of the New York State Comptroller publishes detailed annual information on every IDA tax exemption agreement, and these releases serve as my primary data source on IDA activity. For each agreement active in a given year, this data includes the name of the company operating the project and the total liability and exemptions in that year for
municipal, county, and school property taxes; local and state sales taxes; and the mortgage
recording tax. For example, in the 2013 data, the reader can see that the Beech-Nut factory,
which began receiving exemptions in 2008, received about $3.25M in exemptions (all on
property taxes) in the year 2013.

The data also includes the total amount of bonds issued on behalf of the project and
whether those bonds were federally tax exempt. Finally, it includes sector of the project,
the number of full-time equivalent employees at the site, the address of the project, the date
the project was approved, and the date exemptions will end. The Comptroller has released
this data set annually from 2008 to the present.

I bring in several additional data sources to construct detailed characteristics of each
town. I generate demographic information using the 2006-2010 American Community Sur-
vey. I take information on the number of establishments in each jurisdiction from the Ref-
ERENCEUSA database, which aims to provide the address and sector for the universe of US
business establishments. I compute an average total property tax rate for each town using the
New York State Comptroller’s Overlapping Real Property Tax Tables, and the Comptroller
also publishes data on municipal revenue, expenditure, and total assessed property value.
Finally, data on other programs offering tax breaks in New York was taken from the Good
Jobs First’s Subsidy Tracker 2.0 database. A much more detailed description of the data
construction can be found in Section 2 of the Appendix.

2.4 Key variables

a. IDA tax exemptions: Agreement-level summary statistics, shown in Panel A of Table
1, show a heavy right skew across projects in the total dollars of taxes exempted in 2013. The
median, 75th percentile, and 95th percentile are respectively $10,700; $53,700; and $410,000.
(Some agreements that received no exemptions remain in the data because they owe money
on tax-exempt bonds.) Over ninety percent of agreements active in 2013 were started in
1999 or later, suggesting that very few IDA agreements last over 15 years.

Because I run some of my analysis at the town level, I collapse the data from the agree-
ment level to the town level in Panel B of Table 1. There is again a heavy right skew in
the dollars of taxes exempted in 2013, with the median town having no businesses receiving
exemptions and the 95th percentile town containing businesses receiving over $1,900,000 in exemptions. About 40% of towns have at least one business receiving exemptions (recall that businesses in towns without their own IDA may receive exemptions from a county IDA).

b. Agreement sector and employment: IDAs differentially subsidize firms across sectors—about 30% of active agreements in 2013 were to manufacturing, 15% to retail, 10% to finance, and 45% to services. However, a higher percentage of new manufacturing establishments between 2006-2011 received exemptions (about 2%) than did retail, services, or finance establishments (about 0.5-1%).

Panel A of Table 1 contains statistics on self-reported number of full-time equivalent employees. The median project has 44 FTE employees, and the 95th percentile has about 600. An example of the median project is a midsize retail establishment such as the previously mentioned liquor outlet, while the Wal-Mart distribution center in Sharon Springs has close to the 95th percentile employment.

c. Competition measure: My primary measure of spatial competition, the number of IDAs within 25 kilometers of a town, is shown in Panel B of Table 1 and varies from 0 to 15. However, most of the sample has between one and eight. The number of counties within 25 kilometers, which I will use to instrument for the number of proximate IDAs, varies from zero to five. Distances between towns were computed as the distance between geographic centroids, while the distance between a town and a county was taken as the distance between the centroid of the town and the centroid of the closest town in the county.

2.5 Descriptive Statistics

Before moving to the analysis of strategic interactions between agencies, I present two descriptive exercises to provide a richer picture of IDAs. I first examine which towns tend to charter IDAs. This is important for understanding how areas with many IDAs are different from other areas and in what conditions towns think having an IDA is useful. In Table 2, I compare characteristics of towns with and without their own IDA.\(^9\) The two samples are quite different—towns with an IDA are larger, poorer, and have more IDAs within 25km. These results may suggest that town IDAs are more likely to form in urban areas, perhaps

\(^9\)To avoid skewing means, I do not include New York City in the sample.
because a larger flow of economic activity increases the returns to an agency. They are also consistent with poor, struggling towns establishing an IDA to help attract business, a story that fits with the large number of IDAs in western New York.

Next, in order to better understand why IDAs may be interested in attracting businesses, I consider municipal property values and finances before and after landing a large firm. Property values might increase because tax revenues from the firm lead to improved schools or town services, because of externalities from the new jobs the firm brings, or because the firm improves and encourages development in the neighborhood or area around its location. I take an event study approach and regress financial outcomes in town i in year t on a set of dummies indicating years until/years after a large firm’s arrival, as well as vectors of town and year fixed effects:

$$Y_{it} = \zeta_i + \delta_t + \sum_{k=-3}^{3} \beta_k \mathbb{1}(\text{project_arrival}_{i,t+k}) + \epsilon_{it}$$ (1)

Note that because firms do not randomly choose locations and likely consider time trends in their decision, my results are purely descriptive and do not have a causal interpretation. I consider a large firm to be a manufacturing project that the supporting IDA estimates will have total benefited project value (sum of property value and tax-exempt purchases) greater than 5 million. In order to have at least three leads and three lags, I consider firms that arrived in 2010 or 2011, yielding 48 project arrivals to 31 towns in 15 counties. To avoid underestimating the effect because of spillovers to neighboring towns, I drop towns that are in the same county as a town that landed a large project and did not land a large project themselves. To simplify timing, I also drop the four towns which landed a large project in both 2010 and 2011. This leaves 739 towns in the sample, 27 of which landed a large project. The results are robust to including projects in all sectors rather than manufacturing and to changing the project value cutoff.

I plot the coefficients β_k on the lead and lag dummy variables in Figure 2. Panel A shows the result with assessed property value per capita as the dependent variable. Towns that landed firms were trending steeply downward in the years before the firm arrived—they had about $4,000 higher property value per capita than the comparison group three years
before arrival, versus $8,000 lower in the year the firm arrived. However, this trend flattened sharply in the year of the firm’s arrival. The trend break is economically significant, as the initial downwards trend is large relative to the 2014 median municipal property value per capita of $65,000. Note that this finding is purely descriptive, as I cannot disentangle the effects of new projects from any other forces that may have differentially affected towns that landed projects. For example, it’s possible that towns that were hit particularly hard by the recession also did more to recruit large projects, and then benefited disproportionately as the economy strengthened.

Panels B and C show total tax revenue and total expenditure, respectively. The results suggest no measurable effect on government revenues or expenditures. However, while government budgets appear not to change, this does not mean there is no effect for the citizenry. These firms are receiving tax exemptions, so towns are not yet collecting their full tax liability. Revenues may increase when exemptions expire. Moreover, since most projects still contribute something to the tax base, total tax collections remaining constant may actually reflect a decrease in the property taxes paid by households.

3 Model

I begin by describing a simple model of towns competing to attract mobile firms with tax breaks. I test a model implication in Section 4 and parameterize and estimate the model in Section 5. The framework is similar to Greenstone and Moretti (2004).

Firm f receives profit

$$\pi_{fk} = \alpha_{fk} + b_{fk} + \epsilon_{fk}$$

from locating in town k, where α_{fk} is observable and depends on town characteristics including the base tax rate, b_{fk} is a tax break offer, and ϵ_{fk} is an unobservable error term. In my empirical application, α_{fk} depends on distance from a preferred location, making firm preferences (and competition between towns) spatially concentrated. I later discuss in detail why this structure makes sense for my setting.

Town k receives value V_{fk} equal to v_{fk} if it lands the firm and 0 otherwise. Towns
observe α_{fk} and play a Bayesian Nash equilibrium in b_{fk}. The firm locates in the town k^* that maximizes profit and receives the tax break offer b_{fk^*}.

Towns choose their tax break offer b_{fk} to maximize their expected value from a firm:

$$E(V_{fk}|b_{fk}, b_{f(-k)}) = P(win_{fk}|b_{fk}, b_{f(-k)}) \ast (v_{fk} - b_{fk})$$

(3)

where $P(win_{fk}|b_{fk}, b_{f(-k)}) = P(\pi_{fk} > \pi_{fj} \forall j \neq k|b_{fk}, b_{f(-k)})$. Towns face a tradeoff analogous to many pricing models—offering a larger exemption increases the chance of attracting the firm, but decreases the benefit in the event the firm does locate in the town. Town k’s first-order condition can be written as:

$$b_{fk}^* = v_{fk} - \frac{P(win_{fk}|b_{fk}, b_{f(-k)})}{P_b(win_{fk}|b_{fk}, b_{f(-k)})}$$

where P_b is the derivative with respect to b_{fk}. Note that because P_b is positive, the maximum exemption a town will offer is v_{fk}. The second term acts somewhat like a markup term in many IO models. An oligopolist charges a higher price when there are fewer competitors, while in this setting a town offers a smaller exemption as its probability of winning increases (all else equal). Lastly, when taxes are more powerful at changing firm location, P_b is larger and towns offer larger tax breaks.

The key tradeoffs of local tax breaks can be seen in this first-order condition. Focusing first on the efficiency effect, note that an omniscient social planner would allocate firm f to the town with the highest value v_{fj} (supposing either that differences in firm profits across locations are small or do not enter the planner’s objective). While there is no such planner, local tax breaks may lead to a set of firm locations closer to this optimum than a regime with no local exemptions. To see this, note that if a town’s bid currently satisfies the first-order condition and v_{fj} increases, the optimal bid will also increase. Higher valuation towns will thus bid more and be more likely to land the firm.

The competition effect is also apparent in the first-order condition. If a town’s bid currently satisfies this equality and an additional competitor is added, $P(win)$ will decrease, and in order to restore the equality, the town must increase its bid. This will lead to increased transfers to firms.
This model imposes a strong structure on the data. In my parameterization in Section 5, I will further assume that firm preferences over towns are a function of distance from a preferred location. Before estimating the model, I first provide some support for these assumptions by showing that the data is consistent with an intuitive model implication about spatial competition: towns near more IDAs should, all else equal, have more tax breaks.\(^\text{10}\) This trend also provides model-free evidence on the effect of spatial competition on firm-specific tax breaks.

4 Reduced form evidence on spatial competition

4.1 Empirical Strategy

I now study the model implication that there will be more tax breaks in towns near more IDAs. In my baseline specification, the sample is the 1096 towns\(^\text{11}\) in New York State, an observation is one of those towns in 2013, and errors are clustered at the county level. The model for outcome \(Y\) in town \(i\) and county \(k\) is

\[
Y_i = \gamma \ast \#(\text{IDAs in 25 km})_i + \delta \ast X_i + \alpha_k + \epsilon_i \tag{4}
\]

where \(\alpha_k\) is a county fixed effect and \(X_j\) is a large vector of town characteristics. \(Y_i\) is either the log total exemptions to businesses in town \(j\) or an indicator for whether any business in \(j\) received exemptions. \(\gamma\), the relationship between an additional competitor and tax break activity in a town, is the coefficient of interest.

\(X_i\) includes several population related variables: population, population squared, population within 25 kilometers, and population within 25 kilometers squared. It also includes variables related to business activity: establishments, establishments squared, establishments

\(^{10}\)Martin (2000) proves in a very similar model that more bidders lead to a higher expected tax break for a firm. I test a similar implication at the town level in order to take advantage of areas where no firms received tax breaks. The extension from the firm level to the town level follows immediately from properties of the expected value. In my setting, the number of nearby IDAs is equivalent to the number of bidders.

\(^{11}\)New York municipalities may technically be cities, towns, or villages. For simplicity, I refer to them all as towns. Villages are subsets of towns or cities. I include only a few large villages, those with over 1,000 residents, as separate observations and collapse the remainder into their containing town or city.
within 25 kilometers, and establishments within 25 kilometers squared. Additionally, it includes the number of cities in 25 kilometers and an indicator for being within 25 kilometers of the state border. Finally, it includes a number of demographic variables: percent of households in poverty, percent of individuals who are white, percent of individuals who are college-educated, and percentage of workers in manufacturing, services, and business sectors. While I include many controls in my primary specification, the results are not sensitive to small changes in the set of covariates.

OLS estimates of this equation are likely to be biased because of unobservable town characteristics that are correlated with the number of nearby IDAs. For instance, if towns that are struggling economically are more likely to establish an IDA (as is suggested in Table 2 and in Felix and Hines (2013)), the number of IDAs would be correlated with unobservable economic health. Even if IDAs in these areas followed the exact same decision rule about how to make exemptions as IDAs elsewhere, the lower arrival rate of firms to the depressed area would generate differences in their observed tax break activity. Alternatively, IDAs in these areas may be particularly desperate for development and offer large tax breaks independent of competition.

In an attempt to isolate exogenous variation in spatial competition, I use the number of counties within 25 kilometers as an instrument for the number of IDAs within 25 kilometers. This instrument is obviously correlated with the number of nearby county IDAs and, because towns near more counties are more likely to have their own IDA, is also correlated with the number of nearby town IDAs.

The argument for the exclusion restriction is less obvious. As one might expect, counties are generally smaller in more populated urban areas, causing towns in these areas to have more nearby counties. Moreover, towns near borders formed by rivers will be both near more counties and potentially able to take advantage of the river for shipping or manufacturing. However, when including county fixed effects, the identifying variation actually corresponds to the number of counties near a town relative to other towns in the same county. This variation is driven mostly by whether a town is in the center, on the edge, or near a corner of the county, as shown in Figure 3, which plots the number of counties within 25 kilometers of each town in Ulster County. Appendix Figure 1 expands on this by showing the number of
counties within 25 kilometers for each town in the state, both in the raw data and demeaned at the county level. While the number of counties is higher around population centers before demeaning, the map shows no clear pattern after removing the county-level mean. A balancing test, presented in Table 3, suggests that this variation is indeed idiosyncratic. After controlling for county fixed effects, the number of counties near a town is uncorrelated with key observable town characteristics such as business establishment counts, population, population within 25 kilometers, and median home value.

4.2 Results

Results are shown in Table 4. The first two columns display results for probit and IV probit estimates of Equation 4 with an indicator for whether a town contains any businesses receiving IDA exemptions as the dependent variable. The regular probit specification in Column 1 shows a strong and statistically significant correlation. The coefficient of .11 implies that an additional IDA is associated with a 3.8 percentage point increase in the probability that a town contains at least one business receiving exemptions. In Column 2, I instrument for nearby IDAs with nearby counties and the effect size increases. An additional IDA within 25 kilometers of a town increases the probability by 5.2 percentage points, from 28 to 33% at the median predicted probit score.

The right two columns shows OLS and IV specifications with log total exemptions as the dependent variable. The OLS specification in Column Three shows that an additional IDA is associated with about a 34% increase. When using the instrument in Column Four, the coefficient grows even larger.12 While these effect sizes are substantial, note that an additional IDA represents a very large increase in competition—the median town has only two other IDAs within 25 kilometers. On the whole, these results suggest that spatial competition has a substantial effect on the tax breaks IDAs offer, in line with the proposed model’s implications. Surprisingly, the dummy for being with 25 kilometers of a state border

12When I restrict the estimation of Equation 2 to the 38% of towns with positive exemptions, I have too few observations to support the county fixed effects and estimate a statistically insignificant coefficient of 5-15%, depending on small tweaks to the specification. If I estimate using only towns with positive exemptions and do not include county fixed effects, I estimate a marginably significant coefficient of .09, though dropping the fixed effects weakens my identification argument significantly. An IV tobit estimation with the full sample yields a statistically significant coefficient of similar magnitude to the main results.
is not statistically significant, suggesting that competition from nearby states may not be crucial for the tax breaks offered.

In Appendix Table 1, I vary the radius on both the nearby IDA and nearby county measures from the base of 25 kilometers to 20, 30, 35, or 40 kilometers. The coefficient on the IDA measure shrinks as I increase the radius above 25, disappearing completely at 40 kilometers. This suggests that competition is very local, which will help to identify structural parameters of the model. The effect is also slightly smaller at 20 kilometers than at 25, though this is a noisy estimate which may reflect the lack of variation in the number of counties within 20 kilometers.

To evaluate robustness, I selectively drop areas of the state from the sample and rerun the main specification of Equation 4. Note that because New York City is the only town in its county fixed effect, it is already effectively dropped from the regressions reported above. In Appendix Table 2, I separately drop the Buffalo area, the Albany area, the Hudson Valley/New York City/Long Island area, and the sparsely populated area north of Albany. The estimates remain relatively consistent across samples, suggesting that neither major metropolitan areas nor the rural area in far upstate New York are driving results.

4.3 Heterogeneity by taxing body

IDAs may exempt taxes collected by municipal, school, county, state, and federal governments. Since some of these taxes go directly to local services, while others enter a much larger budget with a more nebulous connection to local quality of life, IDAs may perceive different costs for different types of exemptions. This could lead to heterogeneous effects of competition on different types of tax breaks. For example, if IDAs see a lower cost to offering state exemptions and thus meet firm requests regardless of competition, the association between state exemptions and competition will be relatively weak.

I examine this heterogeneity first by estimating the main IV specification separately with dependent variables of municipal, school, county, and state tax exemptions. Results are shown in the Columns 1-4 of Table 5. The coefficient on nearby IDAs is roughly twice as

13 In an interview, one IDA official stated that his agency prefers to exempt state taxes rather than local taxes.
large for town exemptions as for state exemptions. This could occur because IDAs see a lower cost to offering state exemptions, but the difference in magnitudes could also be caused by differences in the amount of state versus local exemptions requested or the industries that are more likely to request state exemptions. However, the first story is anecdotally supported in the tax exemption guidelines that IDAs are required to post online. While IDAs consistently leave considerable discretion in the property tax exemptions they can offer, most state that all projects approved for property tax exemptions will also receive their requested sales tax exemptions.

I then consider the split between bonds that are exempt from federal income tax and bonds exempt only from state income tax. IDAs may not be concerned with the effects of either of these exemptions on local budgets, but recall that they may issue an unlimited amount of state exempt bonds, while there is a state-level cap on the amount of federally exempt bonds issued. This means that federally exempt bonds are costly to issue for an IDA, because doing so may require the expense of political capital or may lower the amount of federally exempt bonds it can issue in the future. In contrast, state exempt bonds have no cost to the IDA. If this leads to IDAs meeting firm requests for state bonds regardless of competition, competition may be more strongly associated with federally exempt bonds than state exempt bonds. In Columns 5-6 of Table 5, I find that, though the estimates are noisy, this prediction is weakly supported by the data. IDAs within 25 kilometers has a marginally significant (p=.17) positive effect on the amount of federally tax exempt bonds issued, but no effect on the amount of state tax exempt bonds.

Finally, I consider New York State’s Empire Zone program, which provides firms with credits on state taxes. In Column 7 of Table 5, I run the main IV probit specification with an indicator for whether a town has an Empire Zone as the dependent variable and find a small and insignificant effect. This is again consistent with competition having a relatively small effect on exemptions which have a low local cost. Moreover, it suggests that state programs may not be a major dimension of competition between IDAs.

14 Empire Zones are not necessarily administered by IDAs. I provide more details on the program in the Appendix.
5 Model Specification, Estimation, and Identification

5.1 Specification

The previous section suggests that spatial competition increases tax breaks, consistent with the proposed model. In order to study further questions—such as how competition affects firm location, how those firm location changes affect allocative efficiency, and how proposed policy reforms reducing competition would affect the total amount of exemptions—I now parameterize and estimate the model presented in Section 3.

Firm model: Firms follow a two-step decision process, first drawing a town as a preferred location. Firm f in sector s that eventually located in town h in year t draws town j with probability:

$$P_{fj} = \frac{\text{new unsubsidized firms}_{jst}}{\sum_{d(i,h)<40} \text{new unsubsidized firms}_{ist}}$$

if the distance $d(j,h)$ between j and h is less than 40 kilometers and 0 otherwise. Here, $\text{new unsubsidized firms}_{jst}$ is the number of establishments in sector s observed to locate in town j in the years $t-1$ to $t+1$ in the ReferenceUSA data. In words, I assume that the preferred location was not too far from the final location and that towns that attracted more firms similar to f are more likely to have been f’s preferred location. I choose 40 kilometers as the maximum distance because this is the radius at which the number of IDAs has no effect on exemptions.

After a firm draws a preferred location j, each town submits a tax exemption offer b. Given those exemption offers, firms choose their final location. The profit they derive from different locations depends on the tax rate and the distance from their preferred location. Firm f’s profit from location k is given by:

$$\pi_{fk} = \beta_{dist} \ast d(k,j) + \beta_{tax} \ast (\tau_k - b_{fk}) + \epsilon_{fk}$$

where $d(k,j)$ is the distance between k and preferred location j, τ_k is the base property tax rate in town k, b_{fk} is the average exemption over the next fifteen years, and ϵ_{fk} is a logit error term with variance σ^2. Firm f chooses the location k^* that maximizes π_{fk}.
Town model: Towns act after firms have revealed their preferred location and before they choose their final location.\footnote{For simplicity, I consider only towns and not county IDAs in the main text. The case for county IDAs is presented in Section 3 of the Appendix.} While I allow valuations to vary across towns in an extension, in the baseline model each town receives a common valuation v_f for landing the firm:

$$v_f = \kappa_{prop} \times \text{property value}_f + \kappa_{emp} \times \text{jobs}_f$$ \hspace{1cm} (7)

Towns know firm preferences up to the error term and choose b_{fj} to maximize their expected value in a Bayesian Nash Equilibrium. I do not explicitly model changes to equilibrium rents or wages that result from landing a firm, but I assume that they are accounted for in a town’s valuation.

To maintain tractability, I restrict the set of exemption offers a town can make. Rather than allowing arbitrary multi-year agreements, I allow towns to choose from 10 separate 7-15 year agreements that span the agreements observed in the data. I model only property tax exemptions and assume that state sales tax exemptions or credits from other programs will be constant across locations.

This parameterization implies that firms first zero in an area and then choose a particular town in that area. In other words, firms are no longer debating between locating in Buffalo and Albany when collecting tax break offers; they are only considering locations in one area or the other. Though this model is not well-suited for the large national site searches that tend to attract media attention, it may be a reasonable approximation for many businesses in my sample, which is largely composed of small firms. For example, it is consistent with a small business whose owner does not want to work too far from home, a new retail store that wants to be near a particular space where demand is concentrated, or a corporate office or manufacturing firm that is looking for a new location but does not want to move its employees. Moreover, the surveys described in Section 2 find that local governments most often compete against each other in economic development, suggesting that a large number of firms conduct local searches. Additionally, the dummy for a nearby state border is not statistically significant in the regressions presented in Section 4, suggesting that even very close states may be outside the choice set for firms in my sample.
Turning to the firm profit function, it would perhaps be more intuitive to include town amenities or characteristics instead of only distance from a preferred location. However, most of the characteristics firms describe as important—labor force, transit connections, supply chain logistics—are characteristics of an area rather than a single town. Moreover, different firms may care about very different things, and it is not clear how to capture complex preferences that vary across firms using available data.

In order to concisely summarize differences across towns, I set distance from a preferred location as the key characteristic determining firm profit. Profits are highest in the preferred location and then decrease with distance as the area changes and becomes less appealing. While this is an approximation, the effect of competition on exemptions fades rapidly as the radius on the competition measure increases, suggesting that nearby towns are closest substitutes for a firm. This suggests that distance could capture a large portion of the differences across towns. I use geographic distance between locations, rather than car commuting time, because it is highly correlated with transport time by car, rail, or waterways.

I first estimate the base model as presented above and then tweak that model in two ways. First, because distance and property taxes may be differently important for different types of firms, I estimate the model separately for manufacturing/finance and retail/services sectors. Second, I introduce systematic heterogeneity in town valuation of firms in order to further explore allocative efficiency.

5.2 Estimation

I apply a number of restrictions to construct the sample of projects used in model estimation. First, because the model predicts that IDAs will compete on local taxes and meet firm’s requests on state taxes, I include only projects that receive exemptions on local taxes. Second, in order to remain consistent with the model of profit-maximizing mobile firms, I exclude civic projects, projects managed by nonprofits, and agricultural/forestry/fishing projects from the sample. Lastly, in order to avoid reporting inaccuracies and legacy projects, I exclude the small number of active projects that began receiving exemptions before 1993. Because these restrictions shrink the size of the sample, I utilize the 2008 data in addition

\footnote{Some firms receive only tax-exempt bonds or sales tax exemptions on purchases.}
to the 2013 data. This enables me to include firms that received exemptions in 2008 but not in 2013, expanding my sample to 2,220 firm-specific agreements.

I estimate the model via indirect inference, using coefficients from the IV estimates of Equation 4 (with log total exemptions as the dependent variable) presented in Section 4 as the matched auxiliary model. In particular, I denote the coefficient on \(\#(\text{IDAs in } x \text{ km}) \) as \(\gamma_x \) and match \(\bar{\gamma} = \{\gamma_{25}, \gamma_{30}, \gamma_{35}, \gamma_{40}\} \), estimating a separate regression for each radius \(x \). I also match the sum of all exemptions, the percent of towns with at least one exemption, the amount of the 25th percentile exemption, the correlation between the number of jobs in a project and that project’s received exemption. I compute this vector of moments and regression coefficients using both the 2008 and 2013 data and call it \(\phi \). The parameters to be estimated are the disutility of distance \(\beta_{\text{dist}} \) in Equation 6, and the relationship between property value, town characteristics, and town valuation \(\kappa_{\text{prop}} \) and \(\kappa_{\text{emp}} \) in Equation 7. As explained in the upcoming identification section, I calibrate the error \(\sigma^2 \) in firm profit.

The simulation process used to estimate the fit of a vector of parameters \(\hat{\theta}_d = \{\beta_{\text{dist}}, \kappa_{\text{prop}}, \kappa_{\text{emp}}\} \) in draw \(d \) proceeds as follows:

1. I simulate \(N \) sets of exemptions and firm locations given \(\hat{\theta}_d \). To generate each simulated data set, I follow the below steps for each firm observed to receive an exemption in the data:

 - Simulate a preferred location draw using calibrated probabilities.
 - Compute an equilibrium in exemption offers from IDAs.
 - Simulate the firm’s final location given its preferred location and the exemption offers.

2. I then compute the auxiliary moments \(\hat{\phi}_{di} \) for each of the \(N \) simulated data sets.

3. I take the mean of \(\hat{\phi}_{di} \) to arrive at the average moments \(\hat{\phi}_d \) for the parameter draw \(d \).

4. I compute a distance metric \(D_d = (\hat{\phi}_d - \phi)W(\hat{\phi}_d - \phi) \), where \(\phi \) is the true moments in the data and \(W \) is a weighting matrix.17 This is the measure of fit for the parameter vector \(\hat{\theta}_d \).

17I use a two-step procedure to compute \(W \). I first estimate the parameters using the covariance of the
I take the vector θ^* that minimizes the distance metric D as my parameter estimates. Though the optimization problem is nonlinear, it is well-behaved and converges to the same estimates from diverse starting points. For more detail on estimation, see Section 3 of the Appendix.

5.3 Identification of Structural Parameters

The same exogenous variation in competition that drives my reduced form estimates identifies the structural model parameters, as differences in IDA behavior across different competitive environments can be mapped to parameter estimates. For this approach to yield meaningful estimates, IDAs must behave optimally and have knowledge of firm preferences. While it is not immediately obvious that this is the case, there is evidence suggesting that economic development agencies are sophisticated. Shoag and Veuger (2015) show that the subsidies offered by towns are larger when the town will capture more of the spillovers of the subsidized business, and this paper shows a positive relationship between competition and tax breaks. Anecdotally, local governments put a striking amount of effort into economic development. For example, Central New York’s Madison County, which has a population of 70,000, has a professionally produced 24-page economic plan.

In lieu of a formal identification proof, I describe the heuristic features of the data that serve as the primary identification for each parameter. While all the parameters of the model could in principle be identified from the observed moments, in practice, the data is too noisy to confidently identify all of the firm profit parameters ($\beta_{\text{tax}}, \beta_{\text{dist}},$ and the variance σ^2 of the error term). In particular, when σ is between 1.33 and 2.5 and β_{tax} is normalized to 1, there is a set of local minima which are too similar to confidently distinguish between.18 However, fixing a σ within this range, the distance function is well-behaved and has a unique minimum. I thus calibrate σ within this acceptable range and discuss identification holding this parameter fixed. The model produces very similar counterfactual estimates for the different calibrations of σ.

data moments as a weighting matrix. I then simulate the moments under those parameter estimates and compute their covariance matrix. Finally, I take W as the diagonal of that covariance matrix. I use only the diagonal because the full matrix is nearly singular and creates computational difficulties.

18Outside of this range, the simulations do not match the actual dispersion of firms in the data.
First, consider the firm profit function. With β_{tax} normalized to -1, β_{dist} can informally be interpreted as the size of tax break needed to ‘move’ one kilometer closer to the preferred location. For example, if $\beta_{dist}=-2$, a two mil (2%) decrease in the tax rate is equivalent to being one kilometer closer to the preferred location. This parameter will be primarily identified by the set of regression coefficients $\gamma = \{\gamma_{25}, \gamma_{30}, \gamma_{35}, \gamma_{40}\}$. Figure 4 shows simulations of γ under three values of β_{dist}.

When $\beta_{dist} = -2.5$, shown in the dashed line, competition is generally low and fades out quickly. When $\beta_{dist} = -1.66$, in contrast, competition has a much larger effect on exemptions, because IDAs gain more from offering the marginal exemption. When β_{dist} moves to -1.33, two changes occur. First, competition fades out more slowly with distance, as γ_{35} and γ_{40} increase. This occurs because when β_{dist} is smaller, IDAs from a greater distance can ‘make up’ for their disadvantage with tax breaks and influence the bids in an auction. Additionally, γ_{25} decreases slightly, because it takes less competition to induce towns to make the maximum bid and additional IDAs beyond that point generate no further changes. This flattens the relationship between IDAs and exemptions and shrinks the regression coefficient. These distinct shapes of γ identify β_{dist}.

Turning to town’s valuation of firms, κ_{prop} and κ_{emp} are primarily identified by the sum and 25th percentile of exemptions. Figure 5 shows how the sum monotonically increases with increases in κ_{prop}, as towns are willing to offer a larger tax break when they value a firm more. Of course, a given sum and 25th percentile could be produced by a large κ_{emp} and small κ_{prop} or vice versa. The correlation between a project’s number of jobs and received exemption identifies the relative importance of jobs and property value.

In addition to the relationships shown in Figures 4 and 5, increases in the town valuation parameters generally shift γ up and increases in β_{dist} decrease the sum of tax exemptions. However, crucially for unique identification of the structural parameters, one cannot simply increase both of these parameters and have no effect on the simulated moments.

For example, suppose that, starting from a locally optimal set of parameters, one increases κ_{prop} and increases β_{dist}. This may replicate the sum and 25th percentile of subsidies if the changes are made so that the change in κ_{prop} exactly offsets the change in β_{dist}, but it will...

19 The pattern is very similar for κ_{emp}. 26
change $\bar{\gamma}$. Increasing β_{dist} steepens the gradient of $\bar{\gamma}$, making competition fade out more quickly with distance, while increasing the town valuation parameters only shifts $\bar{\gamma}$ down without affecting the gradient. Thus, this change will have a negative effect on this dimension of model fit.

6 Model Results and Counterfactual Simulations

6.1 Parameter Estimates and Fit

Table 6 contains estimates of the model parameters. Panel A shows $\{\beta_{\text{dist}}, \kappa_{\text{prop}}, \kappa_{\text{emp}}\}$ for the full sample, while Panels B and C show estimates within the manufacturing/finance and retail/services sectors, respectively. Each row represents a different calibrated value of σ. Although all calibrations of σ result in very similar counterfactual simulations, there are differences in the estimates of the other parameters. For this section, I focus only on the middle row, where $\sigma = 1.67$. In the firm profit function for the full sample, β_{dist} is equal to -1.637. This implies that a 1.637 mil (.1637%) reduction in the average tax rate over the next 15 years is equivalent to being one kilometer closer to a firm’s preferred location. Since the average property tax rate in New York is 29 mils, this in turn implies that if a town exempted all of its property taxes, it would be as attractive as a town that is 18 kilometers closer to a firm’s preferred location. Firms must be elastic over only this small geographic area in order to rationalize the data, in particular the observed rapid fade with distance of the $\bar{\gamma}$ regression coefficients. Though the baseline model does not have heterogeneity in town valuations, this high “price” of distance already suggests that the heterogeneity across towns would need to be quite large in order for efficiency gains to outweigh the tax breaks required to induce changes in firm location.

On the agency side of the model, I find κ_{prop} to be equal to .292 in the full sample, while the estimate of κ_{emp} implies that towns value jobs at $43,500. The estimate of κ_{prop} implies that the average IDA values property at about two-thirds of the tax revenue that would be collected over 15 years with a tax rate near the state average of 29 mils. While the job valuation may appear somewhat high, it’s common for state and local governments to make
agreements in which the exemption dollars per job exceed $45,000. Intuitively, towns seem to value manufacturing and finance firms ($\kappa_{\text{prop}} = .31, \kappa_{\text{emp}} = 63,800$) more than retail/services firms ($\kappa_{\text{prop}} = .21, \kappa_{\text{emp}} = 38,400$). This likely occurs because manufacturing and finance jobs are generally higher paying and may have larger spillover effects than jobs in retail or services.

To assess the model fit, I compare simulated moments under the estimated parameters to actual moments in Figure 6. The figure shows simulations under the full sample estimates from Table 6 with $\sigma = 1.67$; the other calibrations and subsamples are similar. The top panel shows the moments used in estimation, while the bottom panel shows the distribution of total town exemptions among towns with some exemptions, which was not matched in estimation. In both graphs, the model largely fits the data.

6.2 Counterfactual simulations

Using those parameter estimates, I run simulations for three policies. First, I simulate exemptions and firm locations under the status quo regulations. I then simulate the dissolution of all town IDAs, leaving county IDAs to represent every town in their jurisdictions. Lastly, I simulate a tax break ban, in which IDAs are not allowed to offer any exemptions. I discuss caveats to these results in the next section.

Figure 7 shows the simulated tax exemption total for each policy regime, using the baseline parameter estimates with the full sample of firms and $\sigma = 1.67$. The exemption ban obviously reduces tax breaks to 0 and leads to a large increase in tax revenue, though this is the counterfactual where my assumption that businesses will not leave New York most affects the validity of the estimate. Removing town IDAs reduces the number of competitors in each auction and decreases total tax breaks by roughly 30%. Like the descriptive portion of the paper, the simulations suggest that policies that reduce competition could decrease the total transfer to the private sector. I present results separately for retail and services firms, which are more likely to conduct the local searches best represented by the model, in Appendix Figure 2. The results are quite similar to the full sample.

I next examine how often firm location changes across the counterfactual policies in Table 7. Focusing on the first column, which shows results in the full sample with base
parameter estimates, the town with the highest probability of landing a given firm is the same across all three counterfactuals in 82-88% of the firm auctions, depending on the value of σ. These results are very similar under the sector-specific parameter estimates and for the retail/services subsample. Additionally, Appendix Table 3 shows that the set of towns with a high probability of landing a particular firm changes minimally across counterfactuals.

While increasing competition increases bids, it does not seem to have a large effect on where firms choose to locate. If firm locations do not change very much, there is limited scope for changes in allocative efficiency. However, it is still possible that the small proportion of firms who do move across simulations have an effect on efficiency. I test a possible channel for efficiency gains in Section 6.4.

There are a number of caveats to these simulations. First, I assume that firms do not consider locations in other states or distant regions of New York State. If many firms conduct national searches, this assumption would lead to an overestimate of how reducing local competition affects exemptions. It may be that competition from South Carolina is actually driving tax break offers, so removing the IDA in the town next door does not have a large effect. However, given that local competition does seem to have a large effect on exemptions in Section 4, it seems unlikely that competition from other states is the only factor driving exemptions.

Competition from other states would also affect results on firm location, particularly when simulating the dissolution of all IDAs. Firms may flee the state without tax breaks, which the model does not allow. However, even in a model including competition from other states, firms would have to be relatively inelastic over locations within a metropolitan area in order to match the $\bar{\gamma}$ regression coefficients in the data, suggesting that IDAs would little affect the location of firms within the state. In such a model, offering exemptions at the state level may encourage firms to locate in New York, but introducing town or county IDAs is unlikely to improve the efficiency of firm locations within the state.

Second, the firm profit function is very simple: it depends only on the distance from a preferred location. This rules out potentially important heterogeneity across locations at similar distances from the preferred location. For example, firms could actually be extremely elastic across the preferred location and its nearest neighbor, and the model structure would
compute an average elasticity over all the towns at similar distances from the preferred location. This could lead to less firm mobility in simulations. However, it may be that if firms are more elastic between two particular towns, the towns are quite similar and would see similar spillover effects from a firm, making mobility in such cases less important from an efficiency perspective. Moreover, the pattern in the $\bar{\gamma}$ regression coefficients suggests that distance is crucial for how competition affects exemptions, which in turn suggests that distance provides an important summary measure of differences in firm profits across towns.

Finally, some projects may not occur at all in the absence of tax exemptions. However, the IDA officials interviewed for this project did not think that this was the case for most projects. Finally, the model assumes that unsubsidized firms would not change their locations or the exemptions they receive under counterfactual policies. This could be problematic if movements among the large subsidized firms change consumer demand or labor supply. For example, a large factory may drive up wages in an area, or a new Wal-Mart could hurt sales at local shops, and this would not be captured in simulations.

6.3 Mechanism

Locations stay nearly constant not only because firms are relatively inelastic to tax rates, but also because of equilibrium IDA behavior. Towns that are attractive in the regime with no tax exemptions respond to policy changes by offering exemptions and thus maintaining a high probability of landing the firm. These towns have an initial advantage due to their location, and while they do have to offer exemptions to compete with other towns once tax breaks are introduced, they are generally able to maintain their initial ‘lead’ and land the firm.

I illustrate this mechanism with an example in Figure 8, in which I simulate a single firm arriving with the town of Amherst as its preferred location with different numbers of nearby IDAs. I first simulate the firm’s arrival with all five of the IDAs within 40 kilometers of Amherst turned off, and then turn them back on one by one, repeating the simulation each time. The solid line plots the Amherst IDA’s equilibrium bid across these different levels of competition, and the blue line plots Amherst’s probability of landing the firm. In Panel A, which uses the estimated parameters with $\sigma = 1.66$, Amherst gradually increases its bid as
more IDAs are turned on and maintains a very high (over 95%) probability of winning the firm. This example maps directly onto the result that increased competition increases total tax breaks but does not affect equilibrium firm location.

In order to illustrate the patterns in the data that drive the result on changes in firm location, Panel B repeats the above exercise with altered firm profit parameters. I increase the noise σ from 1.66 to 6.66 and decrease the disutility of distance β_{dist} from 1.63 to 1. Now, Amherst makes the maximum bid immediately when competition is introduced, and its probability of landing the firm decreases to below 70% when all five IDAs are active. This largely occurs because other IDAs are a bigger threat under this set of parameters. Distance is less important, so Amherst’s initial lead is smaller, and the IDAs introduced under different policy regimes have enough power to change the firm’s location. This intuition carries through to the counterfactual simulations, which show much more firm movement under these alternate parameters.

However, these parameters do not match three key moments in the data: γ_{35}, γ_{40}, and the percent of towns with at least one firm receiving exemption. Tax exemptions are very powerful under the alternate parameters, leading to simulated values of the γ_{35} and γ_{40} regression coefficients that are much larger than the zeros observed in the data. The high level of noise in firm profit also leads to too much dispersion of firms across towns. The simulated moments are closer to what might occur in a specific sector in which firms are very elastic across locations, such as the growing data center industry or certain segments of the film industry, but do not match the patterns observed in the IDA data.

6.4 Heterogeneity in Town Valuation of Firms

Though firms rarely change location across policy regimes in the base estimation, it is possible that the firms that do move land in locations where they generate a larger social surplus. In order to directly compare town surplus across counterfactuals, I extend the model to allow the valuation of firms to vary systematically across towns.

A major challenge of this exercise is choosing which town characteristics predict social surplus. While there seems to be an informal perception in the media that the spillovers from economic development are larger in poor, blighted, or declining areas, there is little empirical
evidence on heterogeneity in spillovers.20 I parameterize town valuation to depend on the percent of the population in the town that is below the poverty line, which is correlated with most of the characteristics informally thought to be associated with high spillovers. This exercise is not a conclusive test for the existence of allocative efficiency gains, but rather examines one possible channel.

Formally, I change town valuation of a firm in Equation 7 to

\[v_{fj} = (1 + \beta_{pov} \cdot \text{percent}_{pov_{fj}})(\kappa_{prop} \cdot \text{property}_{value_{f}} + \kappa_{emp} \cdot \text{jobs}_{f}) \]

(8)

where \(\beta_{pov} \) is a new parameter to be estimated. I leave the remainder of the model unchanged. In order to identify \(\beta_{pov} \), I include in the set of matched moments the percent of firms that locate in towns in each decile of poverty. The more firms locate in towns in the higher deciles of the poverty distribution, the larger the estimate of \(\beta_{pov} \).

Parameter estimates and simulation results are shown in Table 8. Panel A compares the base model and the model with heterogeneity. I estimate \(\beta_{pov} \) to be 1.11, implying that a town with 14% poverty (the 90th percentile) would value a firm 11% more than a town with 4% poverty (the 30th percentile). This leads to an average spread in town valuations in a firm’s choice set of 25%. However, this substantial heterogeneity does not increase firm movement across counterfactuals, as the percent of firms with the same most probable location remains at 85%.

Panel B shows allocative efficiency results from the model with heterogeneity. Total town surplus increases by a very small amount as tax break administration becomes more decentralized. The average valuation for a firm in the town in which it locates is approximately $5,914,000 under the status quo, $5,908,000 with only county IDAs, and $5,864,000 with no IDAs. The larger numbers represent higher allocative efficiency, as towns are on average locating in towns that value them more. The efficiency gains in the status quo relative to the scenario with no IDAs or only county IDAs occur because town IDAs bid higher when they have a higher valuation for a firm, which nudges firms towards those high valuation towns. However, this force appears to be quantitatively small in this setting, mostly because equi-

20Suárez Serrato and Wingender (2016) show some evidence that employment multipliers from fiscal spending are larger in areas with previously low economic growth.
librium IDA behavior leads to few location changes across locations. Larger heterogeneity in town valuations would be unlikely to substantially increase the number of location changes, as most losing IDAs already offer the maximum tax break with the estimated heterogeneity and would not be able to make larger bids even if they had higher valuations. Of course, larger heterogeneity could also lead to (arbitrarily) larger gains in town surplus from the firms that do move.

In contrast, differences across counterfactuals in tax breaks are large. Because town valuation is for the lifetime of the firm, net surplus is equal to town valuation minus total tax breaks over all years of a firm’s agreement, rather than the annual tax break. The average exemption received by a firm, summed over the entire multi-year agreement, is $1,033,000 in the status quo, $703,020 with only county IDAs, and zero with no IDAs. This implies that towns garner approximately a $300,000 lower net surplus per firm under the status quo than with only county IDAs and nearly $1,000,000 lower than with no IDAs. Given that there are approximately 150 firms per year in the estimation sample, this implies aggregate losses of $50 and $150 million per year from the status quo relative to only county IDAs and no IDAs, respectively. For this particular implementation of heterogeneity, the small gains in allocative efficiency from town IDAs are overwhelmed by the large increase in total tax breaks.

7 Conclusion

This paper examines how competition between local governments affects firm-specific tax break agreements and firm locations. I first present a conceptual framework of towns competing to attract mobile firms with tax breaks. The model suggests both that competition increases total tax breaks and that tax breaks can help push firms towards efficient locations. I then examine an implication of this model—that towns near more IDAs should have more tax break activity—using agreement-level data on the universe of firm-specific tax break deals made by local economic development agencies in New York State. I use the number of counties near a town, which is uncorrelated with observable town characteristics, to instrument for the number of agencies near a town and find a substantial effect of com-
petition on tax breaks. An additional agency within 25 kilometers of a town increases the probability that at least one business in the town receives exemptions from 28% to 33% and substantially increases the total annual flow of tax breaks to businesses in that town. This is consistent with the model prediction and suggests that local competition is an important force in tax break activity.

I then estimate the model in order to study the effect of competition on firm location and allocative efficiency. I use the estimated model to simulate firm locations and tax breaks under two counterfactual policies that reduce competition—banning both town and county tax exemptions and banning only town exemptions. I find that while both policies decrease total tax breaks, neither would substantially affect firm location, suggesting that there would be no major changes to allocative efficiency. A firm will usually choose the same town across the different counterfactuals—what changes is the exemption that the winning town offers. In an extension, I parameterize town valuations to depend on the poverty rate and find trivial gains in allocative efficiency from decentralization. Together, these findings suggest that tax break competition primarily serves to lower the tax rate on mobile firms.

Understanding how competition affects tax breaks and how tax breaks affect allocative efficiency is important for evaluating proposal to change which governments have the authority to offer tax breaks. For example, Rolnick and Burstein (1995) advocate that Congress use the commerce clause to intervene in tax break bidding wars between states. Funkhouser (2013) and Badger (2014) make similar proposals, and the Arizona legislature recently enacted a moratorium on local tax exemptions for retail establishments in the greater Phoenix area. The Missouri and Kansas legislatures are currently debating legislation that would attempt to end the “border war” for businesses in the Kansas City area.

There are several important caveats to my findings. First, the model is best suited to firms that are not conducting national searches. It may understate the true competition in national searches by considering only local options, and counterfactual simulations do not account for firms fleeing the state as a result of policy reform. My results lean heavily on the assumption that firms in my sample conduct local searches. Secondly, my results are specific to not only local tax breaks, but also to New York State. Further research should both examine local competition in other contexts and investigate the interactions between
states trying to attract firms conducting national searches.
References
development. Working paper.

International City/County Management Association (2014). Economic Development 2014
Survey Results. Washington, DC.

Footnote: The location of Industrial Development Agencies in New York State. The bold black boxes represent counties, each of which has an IDA which may offer tax breaks to firms located in any town in the county. The smaller boxes represent towns, and the darker small boxes represent towns with their own IDA. Town IDAs offer tax breaks to firms within their jurisdiction.
Figure 2: Relationship between large project arrival and town finances

Panel A
Assessed property value per capita

Panel B
Town tax revenue per capita

Panel C
Town government expenditure per capita

Footnote: The relationship between the arrival of a large manufacturing firm and town finances/property value assessments. Each panel shows the point estimates and 95% confidence interval for β_k (coefficients on dummies for years before/after firm arrival) in Equation 1, with the dependent variable listed at the top of the panel. The coefficients are ordered from earliest to latest, with B0 being the year of the firm’s arrival. I classify a manufacturing firm as large if its total benefited project value (sum of property value and tax-exempt purchases) is greater than 5 million. I consider firms that arrived in 2010 or 2011 and drop towns in the same county as towns that landed a large plant in order to avoid spillover effects, leaving 739 towns in the sample, 27 of which landed a large project.
Figure 3: Example variation in number of counties within 25 km across towns in a single county

Footnote: The variation in counties within 25 kilometers across towns in Ulster County. This is an example of the variation in the instrument used to estimate the relationship between IDAs within 25 kilometers and tax break activity. The numbers represent the number of counties within 25 kilometers. The large boxes are neighboring counties, while the stars represent nearby town IDAs. The circle represents an example 25-kilometer radius. Distance between a town and a county is defined as the distance between the centroid of the town and the nearest centroid of a town in the county.
Footnote: Each line in the graph represents the simulated values of \(\{\gamma_{25}, \gamma_{30}, \gamma_{35}, \gamma_{40}\}\) under a given value of \(\beta_{\text{dist}}\), holding the other structural parameters constant at the estimated values. \(\beta_{\text{dist}}\) is the disutility of distance in the firm decision, with larger values implying that tax breaks are less important in firm decisions. \(\gamma_x\) is the coefficient on IDAs within \(x\) kilometers from an estimate of the IV specification in Column 4 of Table 4 with a radius of \(x\) km (rather than 25) on the nearby IDAs measure. Larger observed \(\{\gamma_{25}, \gamma_{30}, \gamma_{35}, \gamma_{40}\}\) that fade out more slowly as distance increases imply that tax breaks are more important relative to distance, leading to smaller estimates of \(\beta_{\text{dist}}\). See Section 5.3 for more detail on identification.
Figure 5: Identification of κ_{prop}

Footnote: The line represents the simulated values of the sum of IDA exemptions for a given value of κ_{prop} (town’s valuation of a business’s property value), holding the other structural parameters constant at the estimated values. The higher the sum of exemptions, the larger the estimated κ_{prop}. A similar graph can be generated for κ_{emp}, which is town’s valuation of a business’s jobs. The two parameters are separately identified by matching the correlation between a project’s exemptions and its number of full-time equivalent employees.
Figure 6: Model fit of matched and unmatched moments

Panel A

Panel B

Footnote: Actual and simulated moments. In Panel A, the dashed bars show the actual data moments, and the solid bars, the simulated moments under the full sample estimates in Table 6 with $\sigma=1.66$. All moments in this panel were used in the estimation. Panel B shows the simulated and actual distribution of total town exemptions, which was not matched in estimation.
Figure 7: Simulated total exemptions under counterfactual policies

Footnote: The figure shows total statewide IDA property tax exemptions in 2013 from counterfactual simulations under the full sample model parameter estimates reported in Table 6 for \(\sigma = 1.66 \). Actual represents the observed exemptions and revenue. Status quo is a simulation with the current policy regime and serves as a benchmark. Eliminate town IDAs leaves only county IDAs active, and Eliminate IDAs simulates the elimination of all IDAs. The actual exemption total in this figure is smaller than the total reported in summary statistics because state sales tax exemptions are not included here and because the estimation uses a restricted sample.
Figure 8: Simulations of a firm arrival with different numbers of nearby IDAs

Panel A: Simulations under estimated parameters

Panel B: Simulations with larger variance σ and smaller disutility of distance β_{dist} in firm profit

Footnote: This figure plots the town of Amherst’s equilibrium bid and win probability across simulations of a firm arriving with Amherst as preferred location and different numbers of IDAs in the firm’s choice set. The top panel uses the estimated parameters with $\sigma=1.66$, while the bottom increases σ to 6.66 and decreases β_{dist} from 1.63 to 1. The x-axis is the number of IDAs in the firm’s choice set. The dashed line and left y-axis show Amherst’s win probability, while the solid line and right y-axis show its tax break offer.
Table 1: Summary statistics

<table>
<thead>
<tr>
<th>Percentile</th>
<th>Tax exemptions</th>
<th>First year of agreement</th>
<th>FTE employment</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0</td>
<td>1999</td>
<td>5</td>
</tr>
<tr>
<td>50</td>
<td>10,700</td>
<td>2007</td>
<td>44</td>
</tr>
<tr>
<td>75</td>
<td>53,772</td>
<td>2011</td>
<td>125</td>
</tr>
<tr>
<td>95</td>
<td>410,000</td>
<td>2013</td>
<td>614</td>
</tr>
<tr>
<td>Mean</td>
<td>120,000</td>
<td>2006</td>
<td>126.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Percentile</th>
<th>2013</th>
<th>IDAs within 25km</th>
<th>Counties within 25 km</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1,031</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>3,662</td>
</tr>
<tr>
<td>75</td>
<td>60,504</td>
<td>4</td>
<td>3</td>
<td>8,025</td>
</tr>
<tr>
<td>95</td>
<td>1,900,000</td>
<td>8</td>
<td>4</td>
<td>32,527</td>
</tr>
<tr>
<td>Mean</td>
<td>600,000</td>
<td>2.96</td>
<td>1.84</td>
<td>17,544</td>
</tr>
</tbody>
</table>

Footnote: An observation in Panel 1 is an IDA-firm agreement in 2013. Tax exemptions is the total dollars of exemptions granted to that business in 2013. Because some agreements only receive financing assistance, rather than tax breaks, some observations have zero tax exemptions. I exclude exemptions on civic facilities from the sample. FTE employment is self-reported and is not populated for every observation. An observation in Panel 2 is a town. Tax exemptions in 2013 is the total dollars of taxes exempted to businesses located in that town in 2013. Distances between towns and counties are computed as described in Section 2.4 of the main text. Population is taken from the 2006-2010 American Community Survey.
Table 2: Characteristics of towns with IDAs

<table>
<thead>
<tr>
<th></th>
<th>Towns with own IDA</th>
<th>Other towns</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>61,964</td>
<td>7,706</td>
<td>54,258***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(13.3)</td>
</tr>
<tr>
<td>Manu. employment percent</td>
<td>5.02</td>
<td>6.28</td>
<td>-1.25***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3.19)</td>
</tr>
<tr>
<td>Percent white</td>
<td>77.7</td>
<td>93.3</td>
<td>-15.5***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(11.7)</td>
</tr>
<tr>
<td>Percent below poverty line</td>
<td>10.3</td>
<td>7.6</td>
<td>2.79***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3.6)</td>
</tr>
<tr>
<td>IDAs w/i 25km</td>
<td>6.58</td>
<td>3.78</td>
<td>2.79***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(8.3)</td>
</tr>
<tr>
<td>2006-2010 average</td>
<td>7.13</td>
<td>6.86</td>
<td>0.26</td>
</tr>
<tr>
<td>unemployment rate</td>
<td></td>
<td></td>
<td>(0.6)</td>
</tr>
<tr>
<td>N</td>
<td>50</td>
<td>1045</td>
<td></td>
</tr>
</tbody>
</table>

*** p<.01, ** p<.05, * p<.1

Footnote: Characteristics of towns with/without their own IDAs. T-statistics appear in parentheses in the differences column. All demographic variables are taken from the 2006-2010 ACS. I drop New York City to avoid skewing means.
Table 3: Observable differences across towns with different values of the instrumental variable

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Counties in 25 km</td>
<td>-69.9</td>
<td>-4.21</td>
<td>-13.1</td>
<td>2590.9</td>
<td>-1295</td>
<td>56497</td>
</tr>
<tr>
<td>[t-statistic]</td>
<td>[1.6]</td>
<td>[1.2]</td>
<td>[1.3]</td>
<td>[1.1]</td>
<td>[1.3]</td>
<td>[1.2]</td>
</tr>
<tr>
<td>Mean DV</td>
<td>489.4</td>
<td>44.8</td>
<td>111.1</td>
<td>16,924</td>
<td>10,183</td>
<td>339,217</td>
</tr>
<tr>
<td>Town observations</td>
<td>1095</td>
<td>1095</td>
<td>1095</td>
<td>1095</td>
<td>1095</td>
<td>1095</td>
</tr>
<tr>
<td>County FE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

*** p<.01, ** p<.05, *p<.1

Footnote: Results from regressions of observable town characteristics on counties in 25 km (the instrument in the main analysis) and a vector of county fixed effects. I drop New York City when computing the mean of the dependent variable. T-statistics appear in brackets. Establishment counts come from the 2011 ReferenceUSA data. Population and property value come from the 2006-2010 American Community Survey. Distance from town to county is the distance from the town's centroid to the centroid of the nearest town in the county. Standard errors are clustered at the county level.
Table 4: Effect of spatial competition on tax breaks

<table>
<thead>
<tr>
<th></th>
<th>Probit</th>
<th>IV Probit</th>
<th>OLS</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDAs within 25 km (S.E.)</td>
<td>.111** (.043)</td>
<td>.151** (.073)</td>
<td>.342*** (.129)</td>
<td>.529*** (.203)</td>
</tr>
<tr>
<td>Marginal effect at median</td>
<td>0.038</td>
<td>0.052</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Town observations</td>
<td>1057</td>
<td>1057</td>
<td>1081</td>
<td>1081</td>
</tr>
<tr>
<td>Town controls</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>County fixed effects</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*** p<.01, ** p<.05, *p<.1

Footnote: Results from regressions of town tax break activity on the number of nearby IDAs. IV regressions use number of counties within 25 km as an instrument for IDAs within 25 km. Standard errors appear in parentheses. Town controls are listed on page 18 of the main text, and the data source for each is described in Section 2.4. Standard errors are clustered at the county level. In Columns 1 and 2, some observations are dropped because some counties have either no exemptions or exemptions in every town. In Columns 3 and 4, the number of observations is not equal to the number of towns in the sample because a small number of towns had negative tax exemptions (generally because of firms failing to comply with payment schedules and owing back payments). I drop these towns.
Table 5: Heterogeneity by taxing body

<table>
<thead>
<tr>
<th>log(exemptions+1) to:</th>
<th>County taxes</th>
<th>School taxes</th>
<th>Town taxes</th>
<th>State taxes</th>
<th>log(federal bonds+1)</th>
<th>log(bonds+1)</th>
<th>1(Empire Zone)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDAs within 25km</td>
<td>(.419**)</td>
<td>(.501***</td>
<td>(.543***</td>
<td>(.267**</td>
<td>.096</td>
<td>-.074</td>
<td>-.024</td>
</tr>
<tr>
<td>(S.E.)</td>
<td>(.166)</td>
<td>(.188)</td>
<td>(.153)</td>
<td>(.127)</td>
<td>(.071)</td>
<td>(.127)</td>
<td>(.07)</td>
</tr>
<tr>
<td>Municipality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>observations</td>
<td>1071</td>
<td>1068</td>
<td>1068</td>
<td>1095</td>
<td>1095</td>
<td>1095</td>
<td>1095</td>
</tr>
<tr>
<td>Town controls</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>County fixed effects</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

*** p<.01, ** p<.05, * p<.1

Footnote: Results from regressions of tax exemptions to different levels of government on the number of nearby IDAs. All regressions use counties within 25 km as an instrument for IDAs within 25 km. County, school, and municipal taxes are property taxes. State taxes are sales taxes. Federal bonds are exempt from all income tax, while general bonds are exempt only from state income tax. Empire Zones confer state tax credits on firms within their boundaries. Town controls are listed on page 16 of the main text, and the data source for each is described in Section 2.4. Standard errors are clustered at the county level. In the left four columns, some observations are dropped because a small number of towns had negative tax exemptions (generally because of firms failing to comply with payment schedules and owing back payments).
Table 6: Estimates of model parameters

<table>
<thead>
<tr>
<th>Calibration of σ (error variance in firm profit)</th>
<th>Panel A: Full sample</th>
<th>Panel B: Manufacturing/finance firms</th>
<th>Panel C: Retail/services firms</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_{dist} of distance</td>
<td>K_{prop}</td>
<td>K_{emp}</td>
<td>K_{prop}</td>
</tr>
<tr>
<td>β_{dist} of distance</td>
<td>K_{prop}</td>
<td>K_{emp}</td>
<td>K_{prop}</td>
</tr>
<tr>
<td>β_{dist} of distance</td>
<td>K_{prop}</td>
<td>K_{emp}</td>
<td>K_{prop}</td>
</tr>
<tr>
<td>Firm disutility of distance</td>
<td>Town value of firm property</td>
<td>Town value of firm jobs</td>
<td>Firm disutility of distance</td>
</tr>
<tr>
<td>1.33</td>
<td>-1.266</td>
<td>0.237</td>
<td>13,900</td>
</tr>
<tr>
<td></td>
<td>(.0466)</td>
<td>(.0057)</td>
<td>(7,667)</td>
</tr>
<tr>
<td>1.67</td>
<td>-1.637</td>
<td>0.292</td>
<td>43,500</td>
</tr>
<tr>
<td></td>
<td>(.0135)</td>
<td>(.0049)</td>
<td>(8,547)</td>
</tr>
<tr>
<td>2.5</td>
<td>-1.828</td>
<td>0.325</td>
<td>56,700</td>
</tr>
<tr>
<td></td>
<td>(.0237)</td>
<td>(.0099)</td>
<td>(2,319)</td>
</tr>
</tbody>
</table>

Number of firm observations: 2024, 2024, 2024, 1212, 1212, 1212, 1012, 1012, 1012

Footnote: Estimates of the structural model parameters from Equations 6 and 7, obtained by indirect inference. The matched auxiliary model includes the coefficient on the number of nearby IDAs from four estimates of the IV specification reported in Column 4 of Table 4, each with a different radius (rather than 25 km) on the nearby IDA variable. β_{tax} in Equation 6 is normalized to -1, and σ, the standard deviation of the error term in Equation 6, is calibrated. The sector-specific estimates were obtained by estimating the model separately for the firms in each sector. Standard errors appear in parentheses. Distance is in kilometers, assessed value in dollars, and employment in FTE jobs. See Section 5 for more details on estimation.
Table 7: Changes in simulated firm location across policy regimes

<table>
<thead>
<tr>
<th>Calibration of σ (error variance in firm utility)</th>
<th>Percent of firms where the town most likely to win is same across all counterfactuals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Base parameters, full sample</td>
</tr>
<tr>
<td>1.33</td>
<td>82.1</td>
</tr>
<tr>
<td>1.67</td>
<td>85.4</td>
</tr>
<tr>
<td>2.5</td>
<td>88.1</td>
</tr>
</tbody>
</table>

Footnote: Statistics on the number of firms that locate in the same town across all counterfactual simulations under the parameter estimates reported in Table 6. Rows show the calibrated value of σ, the standard deviation of the error in firm profit, while the columns indicate the sample and parameter estimates used in simulations. The base parameters, full sample column shows results from simulations with all firms and full sample parameter estimates. Sector specific parameters, full sample shows results from simulations with all firms, but now applying the appropriate sector-specific parameters to each firm. The sector specific, MF sample column uses only manufacturing/finance firms and the parameters estimated from that sample, while the sector specific RS column does the same for retail/services firms.
Table 8: Results from model with heterogeneity in town valuation

Panel A: Comparison to base model

<table>
<thead>
<tr>
<th></th>
<th>Firm disutility of distance β_{dist}</th>
<th>Town value of firm property K_{prop}</th>
<th>Town value of firm jobs K_{emp}</th>
<th>Heterogeneity in town valuation β_{pov}</th>
<th>Simulated total 2013 exemptions, status quo</th>
<th>Simulated total 2013 exemptions, county IDAs</th>
<th>Percent of firms with same most likely location across ctrfls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base model</td>
<td>-1.637</td>
<td>0.292</td>
<td>43,500</td>
<td>NA</td>
<td>190.8M</td>
<td>136.1M</td>
<td>85.4</td>
</tr>
<tr>
<td>Model with heterogeneity</td>
<td>-1.362</td>
<td>0.282</td>
<td>8,340</td>
<td>1.11</td>
<td>200.8M</td>
<td>148.5M</td>
<td>84.5</td>
</tr>
</tbody>
</table>

Panel B: Town surplus from model with heterogeneity

<table>
<thead>
<tr>
<th></th>
<th>Only county IDAs</th>
<th>No IDAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average winning town's valuation of a firm</td>
<td>$5.91M</td>
<td>$5.90M</td>
</tr>
<tr>
<td>Average total tax break to a firm</td>
<td>$1.03M</td>
<td>$703,000</td>
</tr>
<tr>
<td>Average net town surplus from a firm</td>
<td>$4.88M</td>
<td>$5.20M</td>
</tr>
</tbody>
</table>

Footnote: Panel A compares structural parameter estimates and counterfactual simulation results under the base model and the model with heterogeneity in town valuation of firms. The base model uses Equation 7 for valuations, while the other uses Equation 8, in which a town's valuation of a firm depends on its poverty rate. Both are estimated with σ, the standard deviation of the error term in firm profit, calibrated to 1.66. Distance is in kilometers, assessed value in dollars, and employment in FTE jobs. For more detail on the estimation process, see Section 5. Panel B shows town surplus and tax breaks from simulations of three policy regimes under the model with heterogeneity. The top row shows the average valuation for a firm in the town where it locates. Average total tax break is dollars over the course of the entire multi-year agreement. Average net surplus is the valuation minus the total tax break.
Appendix

This appendix contains further details about the exercises in the main text. Section 1 contains more information about IDAs and other forms of business tax breaks in New York. Section 2 describes data sources and the data construction process in more detail. Section 3 provides further information on the model and its estimation.

1 IDA details

IDAs are generally operated by a board of 3-7 people, who are appointed by the local government of the jurisdiction the IDA represents. In some cases, the board members are volunteers, but they are often paid, especially at more active IDAs. IDAs generate revenue from application and operating fees, returns on their properties and investments, and state subsidies and grants.

The legal process for IDA incentives that is somewhat convoluted. Properties owned by IDAs are exempt from many forms of taxes—property, mortgage granting, sales taxes—and IDAs are also able to issue tax-free financing. IDAs pass these exemptions onto projects they support in a variety of ways. In one common arrangement, a company transfers the title to a property to the IDA, the IDA leases the property to the company at no cost, and then the IDA transfers the title back to the company at the conclusion of the project. Since the IDA technically owns the property, no taxes are due while the IDA holds the title. However, IDAs will usually require businesses to agree to a schedule of Payments in Lieu of Taxes (PILOTs) equal to some percentage of the property taxes that would normally be due on the property. PILOTs are then distributed between the local, school, and county governments, but not to the state government. Another common arrangement is for IDAs to issue debt on behalf of companies, use the proceeds to buy a property, and then lease the property to the company at a nominal rate.

While IDAs are the major agents for local economic development in New York State, there were a variety of other tax incentive programs active during the sample period. The three largest by far are the Brownfield Cleanup Program, the Empire State Film Production Credit, and the Empire Zone program. The Brownfield program encourages the redevelopment of
old industrial sites (“brownfields”) and provided about $500 million in state tax credits in 2013. The film production credit provided $380 million in state tax credits and sales tax exemptions in 2013. While the Empire Zone program was closed to new entrants in 2010, in 2008 it provided tax credits totaling nearly $600 million to firms located in blighted areas.

A crucial difference between these programs and IDAs is that they primarily provide credits against state taxes, whereas IDAs mainly offer exemption on local taxes. Additionally, these programs restrict which firms may receive exemptions—Brownfield credits can only be given to firms rehabilitating old industrial sites, Empire Zone credits may only be given to firms in blighted areas, and the film credits only benefit one highly specialized industry. Local officials have less discretion in administering these tax credits, and evidence in Table 5 of the main text suggests that they do not compete on this margin.

2 Data

2.1 Variable Construction

Most variables I take directly from the data sources described in Section 2.3 of the main text, but some require modification before being used in the analysis. In order to generate demographic information for towns in New York, which are not a standard Census geographic level, I aggregate Census block group data, linearly interpolating when borders of block groups do not align with borders of towns. In order to generate town-level information on IDA agreements, I simply collapse the main IDA data by town.

I modify several firm-level variables to facilitate the estimation of the structural model. First, I set the year of the firm’s arrival to two years after its approval date. This appears to be the modal delay in the data (relatively few projects receive exemptions sooner than two years after the date the agreement is signed) and helps identify the project’s cohort of arriving firms in the ReferenceUSA data.

Second, I map the firm sectors provided by IDAs into sectors consistent with the NAICs codes in the ReferenceUSA data. I map Wholesale Trade and Retail Trade into the retail sector; Finance, Insurance, and Real Estate into the finance sector, Manufacturing into
the manufacturing sector, and Services and Construction into the services sector. This mapping is inexact in some cases, and I use project descriptions provided by the IDAs to help determine the appropriate classification.

Third, I prepare project property values and number of employees for the estimation. The number of full-time equivalent number of employees at a location is reported directly in the data. I impute assessed property values using before-exemption property tax liability and tax rates.\(^1\) While most projects have both of these variables, a small percentage are missing employment. I use property value to impute employment in these cases. For example, for a manufacturing project that has a property value but is missing employee information, I regress number of employees on property value for manufacturing projects that contain both values and use the estimates to predict employees for the project that has only a property value recorded.

Since employment and assessed property value fluctuate, I have to make assumptions about the level of employment/property value that IDAs consider when forming their valuations of a firm. This may be especially difficult when projects are in their early years and may not be fully built or at full employment. For a project that was active in both 2008 and 2013, I take employment and property value to be the maximum observed. For projects that were at least five years old in 2008 and were not active in 2013, I take employment and property value to be what was observed in 2008. Finally, for projects that were active in only one of 2008 or 2013 and were less than five years old when observed, I take a more complicated approach. First, I compute the median growth rate in property value and employment from 2008 to 2013 for projects that were less than five years old in 2008 and still active in 2013. Then, for a given observation, I multiply the observed property value/employment by the median observed growth rate of that variable, prorated according to how old the project was at the time of observation. For example, for a project that was two years old in 2013, I multiply its observed property value by the median property value growth multiplied by .6 to arrive at its final property value.

Fourth, in some agreements, exemptions apply to the taxes on only a portion of the

\(^1\)Since, for reasons described in Section 2.2 of the Appendix, county tax rates are the most reliable, I use county tax rates and liabilities to compute assessed values whenever possible. For about 10% of observations, either the county tax rate or liability is 0, and I use the municipal values in these cases.
property value.² For example, if a firm renovates a building, it might receive exemptions only on the increase in assessed value from the renovation, but not on the original value of the building. Only 12% of agreements in 2008 and 17% in 2013 had such arrangements in which the exempt portion of the assessed value was less than 80% of the full assessed value. Because it’s hard to predict what percent of project value would be exempted in different locations and the vast majority of projects receive exemptions on close to the full assessed value, I assume in the model that exemptions always apply to the full assessed value.

Finally, I compute an average property rate for each town. This computation is somewhat complicated, and I describe it separately in the next subsection.

2.2 Property tax rates

To compute the average property tax rate in a town, I first pull the full-value rates³ for each taxing jurisdiction from New York’s Overlapping Property Tax Table. Counties, schools, municipalities, and special districts may all levy property taxes on a given parcel. Because some school districts charge different rates in different municipalities, I average these rates to arrive at a single number per district. These tables include the average rate for special districts in a town in the town tax rate. Data is available to compute these rates for 2008-2013.

Second, because the overlapping tax tables average together the residential and non-residential rate, I manually collect the non-residential rate for the roughly 100 taxing jurisdictions that collect different taxes on different types of property. These tax rates are not stored in a centralized location and are generally only available for the current year on town websites. I was able to collect both the rates and the non-residential/residential ratio for about 80% of the jurisdictions, and I assume that the remaining 20% have a non-residential/residential ratio equal to the average over the jurisdictions whose data I was able to collect.

The above two steps leave me with a non-residential tax rate for each taxing jurisdiction.

²This is similar to the tax increment financing structure frequently used in other areas of the country.
³Full-value rates are adjusted to represent mils per market value of property. Some towns also report rates as mils per assessed dollar of property, where their assessed value is a proportion of market value.
Next, for a given town, I compute the average county, school, and village non-residential taxes according to the percent of the town’s land area that is in a given county/district/village. Recall that I use towns and a small number of large villages\(^4\) as my sample of municipalities. When I include a village as a separate observation, I consider the town the village is in to be not the full town, but the town less the land area taken by the village. I thus do not include these villages’ tax rate in their containing town’s average tax rate. For small villages which I do not include as separate observations, I simply average the village tax rate over the town according to land area.

Finally, I sum a town/large village’s average non-residential tax rates for all jurisdictions collecting tax and arrive at an average property tax rate for a given year. I compute these averages for 2008 and 2013 and take them as the town tax rate in that year.

These property tax rates serve two main purposes in this paper. First, they help impute assessed values, as described in Section 2.1 of this Appendix. For imputing assessed values, I need separate rates by taxing jurisdiction in 2008 and 2013. Because the county tax rate is easier to pin down than school district rates or village rates that may be different in different parts of the town, I use county taxes in the imputation whenever possible.

Second, property taxes enter the firm’s objective function in the model, where I need a firm’s expectation of the average property tax rate in a given location, which is more complicated. Since property taxes are stable over time,\(^5\) I take the average of the rates in 2008 and 2013 to arrive at the rate a firm considers.

2.3 Sample restrictions

As described in Section 5.2 of the main text, I apply a number of restrictions to construct the sample of projects used in model estimation. Because these restrictions shrink the size of the sample, I utilize the 2008 data in addition to the 2013 data. This enables me to simulate more firm arrivals and match both 2008 and 2013 moments. After applying filters, I am left with about 1800 projects in each of 2008 and 2013.

Because IDA projects last multiple years, I have to be careful to not count projects that

\(^4\) Villages are subsets of towns in New York State. Most are very small, with only a few hundred residents.

\(^5\) At least over the 2007-2014 period for which I have data.
are in both the 2008 and 2013 data as separate observations. I am able to match about half of the 2008 projects to the 2013 data, enabling me to simulate their arrival once and come up with exemptions for both 2008 and 2013. About a third of 2008 projects expire before 2013. I can simulate these firms and assume that they do not receive exemptions in 2013. The remaining 15% of 2008 projects do not expire and do not match any projects in the 2013 data. This may occur because the firms go out of business, because the agreements are retracted or renegotiated under a different name, or because of data errors or changes in project descriptions. I drop these agreements. There are also a small amount of agreements (8%) in the 2013 data that list a start year prior to 2008 but do not appear in the 2008 data. I also drop these agreements, which likely represent errors in record keeping, leaving 2,224 observations in the final sample.

3 Model

3.1 Model with County IDAs

The model presented in the main text is slightly simplified, as I discuss only towns, rather than town and county IDAs. While I treat town IDAs identically to how I describe towns in the text, county IDAs have a more complicated problem, as they may offer subsidies and care about welfare in a number of towns. I assume that for each arriving firm, they offer a uniform exemption for locating in any town in the county that does not have its own IDA. Each town in the county draws a value for the firm, and the county IDA chooses a uniform exemption to maximize the expected value among its towns. County \(c \) then faces a very similar objective function to town IDAs:

\[
E(V_{fc}|b_{fc}, b_{f(-c)}) = \sum_{i \in c} (P(win_{fi}|b_c, b_{-c}) * v_{fi})
\]

where \(b_{fc} \) is the exemption offered in each town.

\(^6\)Bear Stearns disappears from the data, for example.
3.2 Model implementation

Section 5.2 of the main text provided an overview of the algorithm I use to estimate the structural parameters of the model. I implement this procedure using the Optimization Toolbox in Matlab. The major challenge of the estimation is ensuring that a solution is a global optimum, rather than a local optimum. For each specification that I estimate, I first run a large, coarse grid over the parameter space to provide some idea of the shape of the objective function. I then run a hybrid simulated annealing/pattern search algorithm from three randomly chosen starting points. This hybrid algorithm simply runs a simulated annealing search followed by a pattern search, taking the solution to the annealing search as the starting point for the pattern search. I confirm that searches using these diverse starting points converge to very similar parameters. I take the solution with the lowest distance metric as the parameter estimate for a given specification. Finally, I compare the distance metric associated with the parameter estimate to distance metrics on the coarse grid and confirm that no other parts of the grid yield a smaller distance metric. I compute standard errors according to the standard sandwich formula with numerically simulated derivatives.
Appendix Figure 1: Counties within 25km

Footnote: The number of counties within 25 kilometers of towns in New York State. The boxes represent towns, colored according to the number of counties within 25 kilometers. The top panel uses the raw number of counties, showing the variation that would drive estimates without county fixed effects. The bottom panel demeaned at the county level, showing the variation driving the estimates with county fixed effects.
Footnote: The figure shows total statewide IDA property tax exemptions in 2013 from counterfactual simulations using the retail/services subsample and retail/services parameter estimates reported in Table 6 with $\sigma=1.66$. Actual represents the observed exemptions and revenue. Status quo is a simulation with the current policy regime and serves as a benchmark. Eliminate town IDAs leaves only county IDAs active, and Eliminate IDAs simulates the elimination of all IDAs.
Appendix Table 1: Varying radius of the competition measure

| IDAs within X km | DV=1(exemptions in 2013) | | | | | DV=log(exemptions in 2013+1) | | | | |
|------------------|--------------------------|--|--|--|--|--|---|--|--|--|--|
| | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
| | 0.104 | .151** | 0.039 | -0.001 | -0.019 | 0.318 | .529*** | 0.231 | 0.084 | -0.097 |
| | (.076) | (.073) | (.05) | (.049) | (.046) | (.201) | (.203) | (.152) | (.152) | (.122) |
| Marginal effect at median | 0.04 | 0.05 | 0.01 | 0.00 | -0.01 | 0.04 | 0.05 | 0.01 | 0.00 | -0.01 |
| Radius (km) | 20 | 25 | 30 | 35 | 40 | 20 | 25 | 30 | 35 | 40 |
| N | 1057 | 1057 | 1057 | 1057 | 1057 | 1081 | 1081 | 1081 | 1081 | 1081 |
| Town controls | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
| County fixed effects | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |

*** p<.01, ** p<.05, *p<.1

Footnote: This table repeats the IV specifications in Columns 2 and 6 of Table 4. Each column represents a separate regression in which the radius of the IDA competition measure varies. I use counties within X kilometers to instrument for IDAs within X kilometers.
Appendix Table 2: Selectively dropping areas of the state

<table>
<thead>
<tr>
<th>Dropped area</th>
<th>NYC Metro</th>
<th>Albany</th>
<th>Buffalo</th>
<th>Upstate</th>
<th>NYC Metro</th>
<th>Albany</th>
<th>Buffalo</th>
<th>Upstate</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>897</td>
<td>1037</td>
<td>1047</td>
<td>905</td>
<td>887</td>
<td>1023</td>
<td>1033</td>
<td>893</td>
</tr>
<tr>
<td>Town controls</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>County fixed effects</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

DV=1(exemptions in 2013)

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDAs within 25 km</td>
<td>.129**</td>
<td>.126**</td>
<td>.089**</td>
<td>.076</td>
<td>.368**</td>
<td>.512**</td>
<td>.433***</td>
<td>.338*</td>
</tr>
<tr>
<td></td>
<td>(.051)</td>
<td>(.061)</td>
<td>(.042)</td>
<td>(.053)</td>
<td>(.178)</td>
<td>(.213)</td>
<td>(.160)</td>
<td>(.188)</td>
</tr>
<tr>
<td>Marginal effect at median</td>
<td>0.045</td>
<td>0.044</td>
<td>0.031</td>
<td>0.026</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

DV=log(exemptions in 2013+1)

<table>
<thead>
<tr>
<th></th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDAs within 25 km</td>
<td>.368**</td>
<td>.512**</td>
<td>.433***</td>
<td>.338*</td>
</tr>
<tr>
<td></td>
<td>(.178)</td>
<td>(.213)</td>
<td>(.160)</td>
<td>(.188)</td>
</tr>
</tbody>
</table>

*** p<.01, ** p<.05, *p<.1

Footnote: This table repeats the IV specifications in Columns 2 and 6 of Table 4. Each column represents a separate regression in which certain areas of the state are selectively dropped.
Appendix Table 3: Changes in simulated firm location across policy regimes

<table>
<thead>
<tr>
<th>σ calibration</th>
<th>Base parameters, full sample</th>
<th>Sector specific parameters, full sample</th>
<th>Sector specific parameters, MF sample</th>
<th>Sector specific parameters, RS sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.33</td>
<td>74.7</td>
<td>82.8</td>
<td>83.2</td>
<td>82.4</td>
</tr>
<tr>
<td>1.67</td>
<td>80.9</td>
<td>81.4</td>
<td>82.4</td>
<td>80.1</td>
</tr>
<tr>
<td>2.5</td>
<td>81.1</td>
<td>82.5</td>
<td>82.5</td>
<td>82.4</td>
</tr>
</tbody>
</table>

Footnote: Statistics on the number of firms where the set of towns with at least 25% chance of winning is the same across all counterfactual simulations under the parameter estimates reported in Table 6. Rows show the calibrated value of σ, while the columns indicate the sample and parameter estimates used in simulations. The base parameters, full sample column shows results from simulations with all firms and full sample parameter estimates. Sector specific parameters, full sample shows results from simulations with all firms, but now applying the appropriate sector-specific parameters to each firm. The sector specific, MF sample column uses only manufacturing/finance firms and the parameters estimated from that sample, while the sector specific RS column does the same for retail/services firms.