Marginal Treatment Effects and the External Validity of the Oregon Health Insurance Experiment∗

Amanda E. Kowalski
Associate Professor, Department of Economics, Yale University
Faculty Research Fellow, NBER
August 13, 2015

Abstract

I examine the external validity of the Oregon Health Insurance Experiment (OHIE) using marginal treatment effect (MTE) methods. A central finding from the OHIE is that individuals who gained health insurance through the OHIE lottery increased their emergency room utilization (Taubman et al. [2014]). Using data from the OHIE, I find that the marginal treatment effect of health insurance on emergency room utilization was positive for some types of individuals and negative for others. Thus, the external validity of the finding that emergency room utilization increases when health insurance expands depends on the types of individuals who gain coverage. Using data from Kolstad and Kowalski [2012], I reexamine the types of individuals who gained coverage through the Massachusetts health reform, which established a mandate for uninsured individuals to purchase coverage or pay a penalty, among other interventions. I find that the Massachusetts individuals induced to gain health insurance appear more similar to the Oregon individuals that decreased their emergency room utilization than they do to the Oregon individuals that increased their emergency room utilization. Furthermore, on the whole, individuals who entered a lottery for health insurance coverage in Oregon likely had a higher desire to use the emergency room than individuals who gained coverage when a mandate required them to do so in Massachusetts. Therefore, it is not surprising that that literature finds decreases in emergency room utilization in Massachusetts despite increases in Oregon because the two state policy interventions expanded coverage to different types of individuals. Given that my findings deepen our understanding of the external validity of the OHIE, I conclude that MTE methods are a valuable addition to the standard toolkit for analysis of experiments and quasi-experiments with binary treatments. Based on my analysis, I highlight several research design considerations that can maximize the ability of MTE methods to shed light on external validity in future applications.

∗Preliminary. Comments very welcome. I thank Aigerim Kabdiyeva and especially Samuel Moy for excellent research assistance. I also thank Ashley Swanson for a helpful conference discussion. Joseph Altonji, Steve Berry, Lasse Brune, Amy Finkelstein, Magne Mogstad, Costas Meghir, Joseph Shapiro, Ed Vytlacil, and seminar participants at Yale and the WEAI provided helpful comments.
1 Introduction

A central finding from the Oregon Health Insurance Experiment (OHIE) is that individuals who gained health insurance through the OHIE lottery increased their emergency room utilization (Taubman et al. [2014]). This finding has attracted considerable interest because legislation requires that emergency rooms see all patients, regardless of whether they have health insurance, making the emergency room the main portal through which the uninsured enter the healthcare system. The emergency room utilization of the uninsured places a burden on other players in the healthcare system, including insured patients who face long wait times in the emergency room and hospitals that provide uncompensated care. Care provided through emergency rooms also likely costs more to provide than care in other settings. Furthermore, the uninsured themselves could potentially get better continuity of care and better quality of care through other outlets. For these reasons, policymakers hope that expansions of health insurance coverage to the uninsured will decrease emergency room utilization. The finding that emergency room utilization increased when the uninsured in the OHIE gained coverage caused a stir because it incited fears that the national coverage expansions currently underway through the implementation of the Affordable Care Act (ACA) would also increase emergency room utilization and therefore cost.

Relative to the other evidence on the impact of expanding health insurance coverage on emergency room utilization, the OHIE evidence is the “gold standard” because it is based on a randomized controlled trial (RCT) and because it took place recently in 2008. Another main source of evidence is based on quasi-experimental variation from the Massachusetts health reform of 2006. That literature finds that emergency room visits decreased (Miller [2012], Smulowitz et al. [2011]) or stayed the same (Chen et al. [2011]), and admissions to the hospital from the emergency room (a proxy for emergency room visits) decreased (Kolstad and Kowalski [2012]). Without formal tools to reconcile the conflicting results from Oregon and Massachusetts, or any two studies for that matter, readers might simply choose to place more weight on results from RCTs. As an alternative, they might note that it is hard to generalize from either source of evidence because they are both based on specific populations, and related evidence on the emergency room utilization of other populations of newly insured individuals also yields conflicting results (see Currie and Gruber [1996], Anderson et al. [2012], Anderson et al. [2014], and Newhouse and Rand Corporation [2012]).
In this paper, I use a data-driven approach based on recently developed econometric methods to say more about the external validity of the results from the OHIE. Specifically, I use marginal treatment effect (MTE) methods introduced by Björklund and Moffitt [1987] and generalized by Heckman and Vytlacil [1999] and Heckman and Vytlacil [2005] and Heckman and Vytlacil [2007]. Until recently, identification issues hindered the use of MTE methods in empirical settings with binary instruments. Hence, these methods could not be applied to RCT’s that utilize binary assignment to a lottery, such as the OHIE. The extensions developed in Brinch et al. [2012] for discrete instruments allow me to add marginal treatment effect estimation to the set of tools available for analysis of RCT’s.

The key innovation of using MTE methods to analyze experiments is that they glean information from empirical selection into treatment. Even if subjects are randomized into a treatment or a control group to evaluate the outcome of an intervention, unless all participants randomized into the treatment group receive the intervention (and all participants randomized into the control group do not receive the intervention), then selection into receipt of the intervention (sometimes called “attendance” or “takeup”) will influence the external validity of the results obtained. External validity is an issue even if the data are analyzed within an instrumental variables “intent-to-treat” framework, which only addresses internal validity. MTE methods expand the toolkit available to address external validity.

I revisit the results of the OHIE using marginal treatment effect methods. Using data from the OHIE, I find that the marginal treatment effect of health insurance on emergency room utilization was positive for some types of individuals and negative for others. Thus, the external validity of the finding that emergency room utilization increases when health insurance expands depends on the types of individuals who gain coverage.

Using data from Kolstad and Kowalski [2012], I reexamine the types of individuals who gained coverage through the Massachusetts health reform, which established a mandate for uninsured individuals to purchase coverage or pay a penalty, among other interventions. I find that the Massachusetts individuals induced to gain health insurance appear more similar to the Oregon individuals that decreased their emergency room utilization than they do to the Oregon individuals that increased their emergency room utilization. Furthermore, on the whole, individuals who entered a
lottery for health insurance coverage in Oregon likely had a higher desire to use the emergency room than individuals who gained coverage when a mandate required them to do so in Massachusetts. Therefore, it is not surprising that that literature finds decreases in emergency room utilization in Massachusetts despite increases in Oregon because the two state policy interventions expanded coverage to different types of individuals. Given that my findings deepen our understanding of the external validity of the OHIE, I conclude that MTE methods will be a valuable addition to the standard toolkit for analysis of experiments and quasi-experiments with binary treatments. Based on my analysis, I highlight several research design considerations that can maximize the ability of MTE methods to shed light on external validity in future applications.

In the next section, I present the generalized Roy model that forms the foundation for MTE methods, and I discuss marginal treatment effects in Section 3. In Section 4 I replicate results from the OHIE, and I extend them to allow for the application of MTE methods. I present the MTE results in Section 5 I discuss the implications of the results for the reconciliation of the Oregon and Massachusetts results in Section 6. In Section 7 I compare my results with results from standard analysis of treatment effect heterogeneity. I explore the robustness of the results in Section 8 I discuss the broader implications of my findings for experimental design in Section 9 and I conclude in Section 10.

2 Model

Let Y be the observed outcome of interest, emergency room utilization. Let D represent the binary treatment of interest, health insurance coverage. Define Y_1 as the potential outcome of an individual in the treated state ($D = 1$), and define Y_0 as the potential outcome of an individual in the untreated state ($D = 0$), such that Y_1 represents potential emergency room utilization with health insurance coverage, and Y_0 represents potential emergency room utilization without health insurance coverage. The following model relates the potential outcomes to the observed outcome:

$$Y = (1 - D)Y_0 + DY_1.$$
I specify the potential outcomes as follows

\[Y_1 = \mu_1(X) + U_1 \]
\[Y_0 = \mu_0(X) + U_0, \]

where \(\mu_1() \) and \(\mu_1() \) are general functions, and \(X \) is a random vector of covariates such as age and gender. \(U_1 \) and \(U_0 \) are random variables that are normalized such that \(E(U_1|X = x) = E(U_0|X = x) = 0 \). I assume that \(E(U_j^2|X = x) \) exists for \(j = 0, 1 \) for all \(x \) in the support of \(X \), but we do not assume independence between \(X \) and \((U_0, U_1) \).

In this model, an individual selects into treatment \(D \) (health insurance coverage) based on the net benefit of treatment, \(I_D \), which we specify as follows:

\[I_D = \mu_D(W) - U_D \]

where \(\mu_D() \) is a general function of \(W = (X, Z) \) where \(Z \) represents the excluded instrument(s). In the OHIE context, \(Z \) is a variable that indicates winning a health insurance lottery. We can interpret \(\mu_D(W) \) as the observed benefit of treatment. \(U_D \) is a random variable, which we can interpret as the unobserved cost of treatment. An individual selects into treatment if the observed benefit of treatment exceeds the unobserved cost of treatment, yielding a positive net benefit:

\[D = 1\{I_D > 0\} \iff \mu_D(W) > U_D. \]

We assume that \(U_D \) is continuous with a cumulative distribution function \(F_{U_D}(\cdot) \) that is strictly increasing. Therefore, the quantiles of \(U_D \) are uniformly distributed. Define \(P(W) \equiv Pr(D = 1|W) = F_{U_D}(\mu_D(W)) \). This normalization allows us to interpret \(P(W) \) as a propensity score. If \(\mu_D(W) \) is a propensity score, then \(P(W) \) is a uniformly distributed propensity score. An individual selects into treatment if \(P(W) \) exceeds the quantile of the unobserved cost of treatment \(U_D \).

Now, suppose that under this model, we specify the following standard regression model for estimation

\[Y = \sigma + \beta D + X'\delta + \varepsilon \quad (1) \]
\[D = \phi + \gamma Z + X'\theta + \nu, \]

where \(Y, D, \) and \(Z \) are defined as above, \(\sigma \) and \(\phi \) are constant terms, \(\beta \) and \(\gamma \) are coefficients, and \(\varepsilon \) and \(\nu \) are error terms. If we estimate Equation (1) via ordinary least squares (OLS), then our estimate will be affected by selection bias because the treatment \(D \) (health insurance) is correlated with the error \(\varepsilon \) conditional on the covariates \(X \). To address this selection bias, suppose that we follow the standard practice of estimating Equations (1) and (2) using an instrumental variable (IV) estimator. If \(\beta \) is a fixed coefficient, then IV recovers the true \(\beta \) and overcomes selection bias.

However, if \(\beta \) is a random coefficient, then IV recovers a local average treatment effect (LATE), as introduced by Imbens and Angrist [1994], because under the generalized Roy model, the treatment \(D \) is correlated with the gains from treatment \(\beta \). In the OHIE context, even though individuals win or lose the lottery, they can still decide whether to take up health insurance, and they will make the decision of whether to take up health insurance based on their net benefit. Thus, individuals would benefit most from health insurance, perhaps through emergency room utilization, are likely to follow through and sign up for health insurance.

Once we move from a world where \(\beta \) is fixed to a world where \(\beta \) can be random, in general, different experiments generally estimate different LATEs. In this world, there is no problem with internal validity, but there is no guarantee of external validity. Different experiments or policies, which manifest themselves as different definitions of the instrument \(Z \) will recover different LATEs.

3 Marginal Treatment Effects

Rather than simply concluding that the results from OHIE do not necessarily generalize, I compute marginal treatment effects (MTE) in attempt to say more about external validity. We begin with the definition of the MTE:

Definition 1. The MTE is the average treatment effect for individuals with covariate values \(X = x \) and an unobserved component of the net benefit of treatment of \(U_D = p \):

\[
MTE(x, p) = E(Y_1 - Y_0 | X = x, U_D = p).
\]

In the context of the OHIE, we are interested in the treatment effect of health insurance on emer-
gency room utilization. Each individual has a treatment effect. We average the treatment effects
over all individuals with the same realized observed characteristics x and unobserved characteristics
p (for example, young women with a high unobserved component of the net benefit of treatment)
to compute an MTE. We can calculate a different marginal treatment effect for each combination
of observed and unobserved characteristics, resulting in an MTE function.

If the outcome Y is specified in dollars, then the MTE has a convenient interpretation as the
willingness to pay for treatment for individuals at the margin of indifference between selecting into
treatment and not selecting into treatment. In the OHIE context, the MTE can be interpreted as
the willingness to pay for health insurance for individuals at the margin of signing up for health
insurance vs. going uninsured. We infer that individuals with high observed benefits of insurance
who are at the margin of gaining coverage must have high unobserved costs.

Any local average treatment effect (LATE) can be recovered as an integral of a marginal treat-
ment effect function. Following [Heckman and Vytlacil 1999] and [Heckman and Vytlacil 2005] and
[Heckman and Vytlacil 2007], we can calculate the LATE for a given binary instrument ($Z \in 0, 1$)
as follows:

$$LATE(x) = \frac{E(Y|Z = 1, X = x) - E(Y|Z = 0, X = x)}{E(D|Z = 1, X = x) - E(D|Z = 0, X = x)}$$

$$= \frac{1}{p_1(x) - p_0(x)} \int_{p_0}^{p_1} MTE(x, p) dp.$$

where the limits of integration result because the instrument Z shifts the propensity score of
receiving treatment from $p_0(x) = P(X = x, Z = 0)$ to $p_1(x) = P(X = x, Z = 1)$.

Just as we can recover the LATE from any experiment using an integral of the MTE, we can
recover other parameters of interest as weighted averages of the MTE. These parameters include
the average treatment effect (ATE), the average treatment effect on the untreated (ATUT), and
the average treatment effect on the treated (ATT). We include the formulas for these parameters
in Appendix A following [Heckman and Vytlacil 2007]. As we can see from the formulas, the ATT
is distinct from what the experimental literature calls the “treatment on the treated,” which is
actually just a LATE.
3.1 Identification of Marginal Treatment Effects

We can identify a nonlinear MTE in the context of a binary instrument and a binary endogenous variable with the following two assumptions, which we take verbatim from Brinch et al. [2012]:

Assumption 1. \((U_0, U_1, U_D)\) independent of \(Z\), conditional on \(X\).

Assumption 2. \(E(Y_j|U_D, X = x) = \mu_j(x) + E(U_j|U_D), j = 0, 1.\)

Note that Assumption (1) does not require that \(X\) and \((U_0, U_1)\) are independent as in standard models. The first assumption is sufficient for us to recover a linear MTE using the “separate estimation approach,” which separately estimates the conditional expectations of \(U_0\) and \(U_1\), \(p_1(x)\) and \(p_0(x)\), respectively. Assumption (1) allows for the separate estimation approach because \(p_1(x)\) and \(p_0(x)\) are functions of \(Z\) only through \(X\).

Under the separate estimation approach, the treated individuals identify \(p_1(x)\). They include “always takers” who receive treatment regardless of the value of the instrument \((D = 1 \text{ if } Z = 0 \text{ and } D = 1 \text{ if } Z = 1)\), and “compliers” who are only induced to receive treatment by the instrument \((D = 1 \text{ if } Z = 1 \text{ and } D = 0 \text{ if } Z = 0)\). In the OHIE context, the always takers are those who enroll in health insurance regardless of whether they win the lottery; compliers enroll in health insurance if and only if they win the lottery. The econometrician cannot identify any given individual as an always taker or complier because doing so would require observation of a counterfactual state, but the econometrician does know that the treated population consists of a weighted average of always takers and compliers.

Similarly, the untreated individuals identify \(p_0(x)\). They include “never takers” who do not receive treatment regardless of the value of the instrument \((D = 0 \text{ if } Z = 1 \text{ and } D = 0 \text{ if } Z = 0)\), and compliers defined above. By assumption, there are no “defiers” who only receive the treatment if they are not randomized into it and vice versa \((D = 0 \text{ if } Z = 1 \text{ and } D = 1 \text{ if } Z = 0)\). If the MTE is linear in the propensity score, then separating the compliers and always takers from the compliers and never takers gives us a single moment that allows us to identify a linear MTE function.

Assumption (2) allows us to recover a nonlinear MTE function because it implies that the MTE is additively separable in \(X\) and \(U_D\):

\[
\text{MTE}(x, u_D) = \mu_1(x) - \mu_0(x) + E(U_1 - U_0|U_D = u_D)
\]
Given this additive separability, we have an additional moment within each x. For example, in the OHIE context, we can estimate a propensity score for treated women and untreated women and a propensity score for treated men and untreated men. By assumption, the MTE for women should be the same regardless of whether they win the lottery or not, and the MTE for men should be the same regardless of whether they win the lottery or not. We can use this assumption to fit a nonlinear MTE to the propensity scores from both genders in a pooled specification.

Assumptions (1) and (2) are weaker than assumptions required by many standard models. However, they are harder to defend if the outcome Y is binary or discrete. Extending MTE estimation to contexts with binary instruments and binary dependent variables is an important area for future work. Here, we always report estimates with Y specified as a number of visits alongside Y specified as a binary variable for any visits to assess the sensitivity of the results to the specification of the dependent variable.

3.2 Estimation of Marginal Treatment Effects

To estimate the MTE, we specify the following functional form:

$$MTE(x, p) = E(Y_1 - Y_0 | X = x, U_D = p) = (\beta_1 - \beta_0)'x + k(p). \quad (3)$$

We detail our MTE estimation algorithm in Appendix B. We also intend to make our Stata code available for use in other applications.

As we can see from Equation (3), the MTE function does not vary with the instrument Z. Therefore, the MTE should not vary across repeated experiments. In practice, if the MTE varies across experiments, then we can conclude, in the spirit of a Hausman [1978] test, that one of the experiments is invalid or that an assumption required for MTE estimation is violated. However, the MTE does vary with the outcome variable Y, the endogenous variable D, and the set of covariates X. The MTE function will also vary with a set of ancillary estimation parameters: the functional form for $k(p)$ (local linear in the base case), the estimation grid P with associated bandwidth h (0.1 in the base case), as discussed in Appendix B. In our application to the OHIE, we demonstrate how the MTE varies with different modeling choices.
4 Bringing MTE to the OHIE

4.1 Replication and Extension

To estimate marginal treatment effects in the OHIE, we first replicate the main IV results reported in Taubman et al. [2014]. We then extend them to allow for MTE estimation, showing that our extensions leave the main findings intact. Our dependent variable of interest Y is emergency room utilization. Following Taubman et al. [2014], we specify emergency room utilization in two ways. The top panel of Table reports impacts on the probability of having any emergency room visit, and the bottom panel reports impacts on the number of emergency room visits, including zeroes for individuals with no visits.

Using the publicly available data, we replicate the main results from Taubman et al. [2014] in Column (1). We use the full set of administrative data available on 24,646 lottery entrants. The coefficient in the top panel of Column (1), which we replicate exactly, indicates that individuals who receive Medicaid coverage increase the probability that they visit the emergency room by 6.97 percentage points on a base of 34 percentage points in the control group (a 20.5% increase). The coefficient in the bottom panel indicates that individuals who receive Medicaid coverage increase their visits to the emergency room by 0.387 visits on a base of 1.00 visit in the control group (a 38.7% increase). As detailed in the table notes, we cannot replicate the result in the bottom panel exactly because of censoring and truncation performed to limit the identification of human subjects in the publicly-available data, but our estimate is very similar to the coefficient of 0.41 on a base of 1.02 visits reported in Taubman et al. [2014].

Both estimates are statistically significant at the 1% level. Following Taubman et al. [2014], we calculate standard errors clustered by household ID, which we report beneath each point estimate. We report significance crosses on those standard errors. For comparison to the results from our MTE methods, which require bootstrapped standard errors, we report standard errors block bootstrapped by household ID with corresponding significance stars as the second set of errors. In practice, both sets of standard errors differ very slightly.

Taubman et al. [2014] specifies the endogenous variable D as an indicator for any Medicaid coverage, which includes Medicaid coverage obtained via the lottery and Medicaid coverage obtained via existing eligibility guidelines. To examine the external validity of the OHIE, we re-specify
replications as an estimate of the standard error.

This variable was truncated at 2*99th percentile of the original distribution (conditional on being non-zero). The public use variable was additionally censored so that no individual value has fewer than ten observations.

The details for the censoring and truncation, stated in oregonhie_ed_codebook.pdf on page 1, are as follows:

The columns for Number of Emergency Room Visits deviate slightly from the published version because of censoring and truncation of the dependent variable. The publicly available Oregon documentation files states in oregonhie_science_replication.do).
the endogenous variable as “any health insurance coverage” because other contexts such as the Massachusetts health reform and the Affordable Care Act expand other types of coverage as well as Medicaid coverage. Respecifying the endogenous variable to make it narrower could result in a violation of the exclusion restriction if the lottery affects outcomes outside of the narrower endogenous variable. However, respecifying the endogenous variable to make it broader should not induce new concerns about exclusion restriction violations. Empirically, when we change the endogenous variable from Medicaid in Column (1) to any insurance in Column (2), the regression coefficients change very little.

We next examine robustness of the OHIE results to the inclusion of control variables. To examine the external validity of the OHIE for other contexts, we want to include only controls that will be widely available in other contexts. Beyond that consideration, we want to include as many controls as possible so that we can generalize our results to other populations in as much detail as possible. Empirically, the more controls we include, the more finely we can estimate the nonlinear MTE function via Assumption (2).

The main results in Taubman et al. [2014] include only two controls. The first is a control for previous emergency room utilization, specified as noted in the table notes. In other empirical contexts, we cannot construct control variables for previous emergency room utilization unless we have longitudinal data, so we omit them from our extension of the OHIE results. When we do so in Column (3) the R-squared values decrease, as expected, but the point estimates and the standard errors remain almost unchanged from the previous column.

The second control included in the main OHIE results is a count of the number of lottery entrants in the household. As noted in Taubman et al. [2014], the results are not robust to the removal of this control. Indeed, when we further remove this control in Column (4), the coefficients become negative and lose their statistical significance. This control is important because the OHIE allowed multiple members of the same household to sign up for the health insurance lottery independently. However, if any member of the household won the lottery, then all members of the household were treated as winners. Thus, individuals in households with multiple entrants had a higher probability of winning. The overall probability of winning the lottery was 39%, but the probability of winning was 57% for individuals in households with multiple lottery entrants, in contrast to 34% for individuals in households with a single lottery entrant.
As we try to draw conclusions about the external validity of the Oregon Health insurance experiment, it is hard to specify a different covariate available in other contexts that would capture the same information as the number of lottery entrants. Household size is the best candidate, but it is not available in the administrative data. Furthermore, household size is distinct from the number of lottery entrants because even if a household had two or more members, not all members signed up for the lottery. It is possible that individuals who really wanted health insurance encouraged the other members of their household to sign up for the lottery. It is also possible that these individuals really wanted to visit the emergency room for care. The control for the number of lottery entrants ensures that the OHIE results are internally valid because the results compare individuals who won the lottery to individuals who did not win the lottery, conditional on the number of lottery entrants. However, the control for the number of lottery entrants poses challenges for external validity.

To maximize what we can learn about external validity, we include the widest set of controls that are available in the Oregon administrative data that are likely to be available in other contexts, and we refer to them as the “common controls” in Table 1. These controls include an indicator for gender, an indicator for English speakers, an indicator for each year of age, and all two-way interactions. As we demonstrate in Column (5), the inclusion of the common controls alongside the control for the number of lottery entrants leaves the coefficients virtually unchanged, so we retain these common controls in the subsequent specifications.

In the last two columns, rather than control for the number of lottery entrants in the full sample, we split the sample by the number of lottery entrants. As shown in Column (6), about 20% of the sample had one more lottery entrant (only 0.21% of the sample had three lottery entrants, which is the maximum value). Within the subsample with multiple lottery entrants, the mean emergency room utilization in the control group is smaller than it is in the full sample, but the coefficients are much larger. The coefficients indicate that obtaining health insurance coverage increases the probability of an emergency room visit by 21 percentage points beyond the 21% visit rate in the control group; it increases the number of visits by 0.86 visits beyond the 0.45 visits made in the control group. Both estimates are statistically significant at at least the 5% level. Individuals who were part of a household with multiple lottery entrants might have had some pent up demand for emergency room care, which was available but not necessarily free.

In the last column, we report the same specification using only the 80% individuals who were
part of households with a single lottery entrant. The coefficients are still positive and statistically significant at at least the 10% level, but their magnitudes are smaller, indicating that insurance increases the probability of an emergency room visit by 4.53 percentage points on a base of 37 percentage points and that insurance increases the number of visits by 0.22 on a base of 1.09 visits.

We retain the specification in Column (7) as our preferred specification for the examination of external validity using marginal treatment effects. Absent richer demographic information in the administrative data, it is hard to identify which individuals in other contexts would resemble the OHIE participants from households with multiple lottery entrants. Therefore, it seems reasonable to examine the external validity using the sample of individuals with only a single lottery entrant. We also report the robustness of our results to MTE specifications based on the full sample following Column (5) and the sample with two or more lottery entrants following Column (6).

4.2 Statistics on Compliers, Always Takers, and Never Takers

MTE estimation for a binary instrument relies on the separation of compliers from always takers and never takers through the separate estimation approach, made possible by Assumption (1). Following Imbens and Angrist [1994], compliers identify the LATE estimated by IV. Although it is not possible to identify compliers at the individual level, it is possible to identify their average characteristics. This exercise can be implemented in all experimental or IV settings for which the endogenous variable and the instrument are available for the same individual. It has not yet become part of the standard toolkit, but it has been implemented for the OHIE.

We calculate the average characteristics of compliers, always takers, and never takers to motivate the development of a new exercise that we introduce and implement. Our exercise calculates the prevalence of each of these types at different empirical probabilities of choosing health insurance coverage. These exercises inform the value of the MTE separate estimation approach, and they are informative in their own right, providing more insight into the internal and external validity of the OHIE.

In Column (1) of Table 2, we report the average characteristics of all individuals in our primary analysis sample. 56% are female, the average age is 40.7, and 91% are English speakers. The second

1 Finkelstein et al. [2012], Section IV.C and Appendix Table A26 report results from a similar exercise following Angrist and Pischke [2009], page 171, which shows that ratio of the first stage within a subgroup to the overall first stage gives the relative likelihood that the subgroup includes compliers. Finkelstein et al. [2015] implements the same version of the exercise that we implement.
two columns divide the sample on the basis of the lottery instrument Z, as is commonly done to check experimental balance between the treatment groups and the control groups. As shown by the number of observations, 34.3% of the sample wins the lottery. The covariates appear balanced, raising no concerns about internal validity.

Table 2: Average Characteristics of Compliers, Always Takers, and Never Takers

<table>
<thead>
<tr>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
<th>(10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Z = 1</td>
<td>Z = 0</td>
<td>D = 1</td>
<td>Z = 1</td>
<td>Z = 0</td>
<td>D = 0</td>
<td>Z = 1</td>
<td>Z = 0</td>
<td>Z = 1</td>
</tr>
<tr>
<td>Age in 2009</td>
<td>40.7</td>
<td>40.7</td>
<td>41.4</td>
<td>40.2</td>
<td>39.6</td>
<td>40.9</td>
<td>42.5</td>
<td>42.6</td>
<td>42.6</td>
</tr>
<tr>
<td>Female</td>
<td>0.56</td>
<td>0.55</td>
<td>0.56</td>
<td>0.66</td>
<td>0.50</td>
<td>0.52</td>
<td>0.51</td>
<td>0.55</td>
<td>0.53</td>
</tr>
<tr>
<td>English</td>
<td>0.91</td>
<td>0.91</td>
<td>0.91</td>
<td>0.92</td>
<td>0.90</td>
<td>0.91</td>
<td>0.92</td>
<td>0.92</td>
<td>0.92</td>
</tr>
<tr>
<td>Number of Observations</td>
<td>19,643</td>
<td>6,755</td>
<td>12,888</td>
<td>4,096</td>
<td>3,747</td>
<td>2,659</td>
<td>9,141</td>
<td>2,132</td>
<td>4,068</td>
</tr>
</tbody>
</table>

$D = 1$ if any insurance
$Z = 1$ if randomized into lottery
English is defined as an individual choosing materials that are written in English. These characteristics are calculated using the sample of observations with 1 lottery entrant in household.

Columns (4) through (7) provide cross-tabulations of the average characteristics by the instrument Z (the lottery) and the endogenous variable D (health insurance coverage). Individuals who receive health insurance coverage but did not win the lottery must be always takers, and Column (5) identifies their average characteristics. Similarly, individuals who do not receive health insurance coverage despite winning the lottery must be never takers, and Column (6) identifies their average characteristics. Column (8) isolates the average characteristics of the “treated compliers” who receive health insurance via

$$
\frac{\pi_C + \pi_A}{\pi_C} \left[E(X|D = 1, Z = 1) - \frac{\pi_A}{\pi_C + \pi_A} E(X|D = 1, Z = 0) \right],
$$

and Column (9) calculates the characteristics of the “control compliers” who do not receive health insurance via

$$
\frac{\pi_C + \pi_N}{\pi_C} \left[E(X|D = 0, Z = 0) - \frac{\pi_N}{\pi_C + \pi_N} E(X|D = 0, Z = 1) \right],
$$

where π_m is the fraction of always takers ($m = A$), never takers ($m = N$), or compliers ($m = C$).
in the full sample. We calculate these fractions noting that \((\pi_A + \pi_N + \pi_A = 1)\). Comparison of Columns (8) and (9) gives an additional test of experimental balance because given random assignment, compliers who win the lottery should have the same average characteristics as compliers who do not win the lottery. In general, the experimental balance looks good, but this test relies on fewer observations than the comparison of Columns (1) and (2), so it is not surprising that the columns are more different.

Column (10) gives the average characteristics of all compliers by weighting Columns (8) and (9). Comparing Column (9) to Column (1), we see that the compliers in the OHIE are more likely to be male, they are slightly older, and they are slightly more likely to speak English than individuals in the full sample.

We next extend the exercise presented in Table 2 to provide a new test of experimental balance to be reported in addition to MTE estimates. To implement this test, we first estimate the propensity scores required by the first step of the MTE estimation. Appendix Table C1 reports the average marginal effects from the logit model used to estimate the propensity scores. The coefficients show that winning the lottery shifts the probability of receiving health insurance by about 29 percentage points relative to an average of 29% in the control group. Women and English speakers are more likely to take up health insurance conditional on winning the lottery, but it is hard to discern general patterns based on the age coefficients.

Figure 1 plots the distribution of estimated propensity scores in increments of 0.01. We see that most of the support falls in the range of 0.2 to 0.7. The range of the support indicates that based on observable characteristics, few individuals in the data have very low probabilities of obtaining health insurance coverage, and even fewer individuals have very high probabilities of obtaining health insurance coverage, even taking the lottery into account. The support of the propensity score distribution and hence the support of the MTE depends on the included covariates. Coarser covariates result in a coarser support, and additional covariates can expand the support.

Within each bar in Figure 1, we use different colors to indicate the stacked counts of control compliers, treatment compliers, never takers, and always takers. We obtain these counts by implementing the exercise in Table 2 within each propensity score bin. (To see this, note that we could implement the exercise just within the sample of women or men, and we can just as easily implement it within a propensity score bin.) Given these breakdowns, we can visually see what
we learned from the propensity score regression: the lottery instrument increases the probability of health insurance coverage by about 30 percentage points, such that we see mostly control compliers in the bins on the left and treatment compliers in the bins on the right. Given experimental balance, the distribution of treatment compliers should be the same as the distribution of control compliers, but it should be shifted to the right. The figure has slightly more mass on the left than it does on the right because there are more observations in the control group than there are in the treatment group, but visual inspection indicates experimental balance.

We can also use Figure 1 to gain more intuition behind the identification of the MTE. Through Assumptions 1 and 2, we require that the MTE is the same for people with the same covariates, regardless of whether they win the lottery. Thus, for example, the MTE must be the same for English speaking women who are 40 years old regardless of whether they win the lottery. If English speaking women who are 39 years old have similar propensity scores to English speaking women who are 40 years old, then the MTE estimation will draw on the 39-year-old English speaking women to refine the estimate at the propensity score that includes the 40-year-old English speaking
women and vice versa.

4.3 MTE weights

Following the formulas in Appendix A, we construct the empirical weights that we can use to recover other parameters from the MTE, and we plot those weights in Figure 2. In this figure, we transform the horizontal axis to be the percentiles of the propensity score plotted on the horizontal axis of Figure 1 so that the resulting axis can be interpreted in terms of “percentiles of U_D” in the notation of Section 2. This axis label emphasizes that the estimation of propensity scores allows us to isolate unobserved heterogeneity. In this figure and all figures that follow, we do not report results below the 10th percentile or above the 90th percentile to ensure that we have enough power to obtain estimates at the extremes of the support.

Figure 2: MTE Weights

The average treatment effect (ATE) weights all individuals equally. As shown in Figure 2, the ATE weights differ slightly across the percentiles of U_D because of the discreteness of the covariates. Absent this empirical variation, the ATE weights would be constant at a value of 1.

As shown, the average treatment effect on the untreated (ATUT) places higher weight on
individuals with higher unobserved costs of treatment U_D. Their propensity scores indicate that they should have insurance, but the fact that they do not indicates that their unobserved cost of obtaining insurance is high. Conversely, the average treatment effect on the treated (ATT) places higher weight on individuals with low unobserved costs of obtaining insurance. As the LATE weights show, the IV estimate from the OHIE lottery places the most weight on individuals with middling values of the unobserved costs of treatment. Comparing the LATE weights shown in Figure 2 to the distribution of propensity scores for compliers shown in Figure 1 there appears to be some relationship between the two, which is intuitive because the compliers identify the LATE.

Up to this point, our analysis of complier characteristics and treatment effect weights has not utilized any data on the outcome of interest Y, in this case, emergency room utilization. Therefore, analysis of external validity using these techniques is not outcome dependent. Next, we report the estimated MTE function, which does depend on the outcome of interest.

5 Results

In Figure 3 we report the results from MTE estimation. The solid blue line in the top panel gives the estimated MTE function for any emergency room visits, and the solid blue line in the bottom panel gives the estimated MTE function for the number of emergency room visits. Each point on the line gives the treatment effect averaged over individuals in the same percentile of unobserved costs of treatment U_D. Recall that individuals to the left have low unobserved costs of treatment – given their observable characteristics, they have low probabilities of obtaining health insurance, but those who attain it nonetheless must have low unobservable costs of treatment. We see that these individuals, represented on the leftmost part of the figure, have marginal treatment effects greater than zero, meaning that they increase their emergency room utilization upon taking up health insurance coverage.

However, for both measures of emergency room utilization, starting at about the 60th percentile of unobserved cost of obtaining health insurance coverage U_D, the marginal treatment effect becomes negative. This means that individuals in this range decrease their emergency room utilization upon taking up health insurance coverage. If we fit a line to each nonlinear MTE, we attain the thick dashed lines depicted in red. These lines indicate that as the predicted propensity
Figure 3: MTE

Oregon Administrative Data, 1 Lottery Entrant in Household
Bootstrapped 95% CIs indicated by thin dashed lines
of taking up health insurance coverage based on observable characteristics increases, and hence as the unobserved cost of taking up health insurance increases because the individuals at the margin have not yet taken it up, the marginal treatment effect of health insurance on emergency room utilization decreases. The line for the “any visit” outcome even crosses zero, and the line for the “number of visits” outcome appears that it will cross zero slightly above the range of reported values. Thus for some individuals within the OHIE, the MTE is positive, but for others, the MTE is negative, depending on their observed probability of selecting into health insurance.

The estimated heterogeneity in the MTE function will lead to estimates of the local average treatment effect (LATE) that differ from the average treatment effect (ATE), the average treatment effect on the treated (ATT), and the average treatment effect on the untreated (ATUT). We can obtain each of these quantities by applying the corresponding weights depicted in Figure 2 to the MTE function. We present the results in Table 3.

The point-wise 95% confidence intervals reported on the MTE function and the weighted linear MTE reported in Figure 3 are wide at each point, never rejecting zero. However, aggregating the MTE function into the LATE does reject zero. We are also able to reject zero for other treatment effects.

The next row of Table 3 reports the estimate of the average treatment effect (ATE), obtained by applying the ATE weights reported in Figure to the MTE functions reported in Figure 3. The average treatment effect is larger than the local average treatment effect, indicating that if we had a policy that signed all individuals up for coverage rather than allowing them to decide whether to
sign up or not, then emergency room utilization would increase by even more than it did for the compliers in the OHIE.

The next two rows of Table 3 report estimates of the average treatment effect on the untreated (ATUT) and the average treatment effect on the treated (ATT), obtained by applying the respective weights from Figure 2 to the MTE estimates in Figure 3. The ATT estimate places more weight on the MTE estimates at the lower propensity scores where the MTE function is the largest. Unsurprisingly, the ATT estimate is the largest estimate in the first column, indicating that among individuals that would select into health insurance based on their observed characteristics and unobserved costs of obtaining health insurance, health insurance increases the probability of an emergency room visit by 9.4 percentage points. As expected given the weights and the shape of the estimated MTE function, the average treatment effect on the untreated is much smaller than the average treatment effect on the treated. The ATUT estimate indicates that among individuals that entered the Oregon lottery who would not choose to select into health insurance based on their observed characteristics and their unobserved costs of obtaining health insurance, health insurance increases the probability of an emergency room visit by 2.6 percentage points.

<table>
<thead>
<tr>
<th>Treatment Effect</th>
<th>Any ER Visits</th>
<th>Number of ER Visits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Average Treatment Effect (LATE)</td>
<td>0.055</td>
<td>0.305</td>
</tr>
<tr>
<td></td>
<td>(0.024)**</td>
<td>(0.134)**</td>
</tr>
<tr>
<td>Average Treatment Effect (ATE)</td>
<td>0.062</td>
<td>0.409</td>
</tr>
<tr>
<td></td>
<td>(0.026)**</td>
<td>(0.131)***</td>
</tr>
<tr>
<td>Treatment on the Untreated (ATUT)</td>
<td>0.026</td>
<td>0.318</td>
</tr>
<tr>
<td></td>
<td>(0.032)</td>
<td>(0.180)*</td>
</tr>
<tr>
<td>Treatment on the Treated (ATT)</td>
<td>0.094</td>
<td>0.477</td>
</tr>
<tr>
<td></td>
<td>(0.037)**</td>
<td>(0.153)***</td>
</tr>
</tbody>
</table>

Block bootstrapped standard errors in parentheses. To obtain these standard errors, we block bootstrap by household ID for 200 replications, and we report the standard deviation of the replications as an estimate of the standard error.

*** p<0.01, ** p<0.05, * p<0.1

Treatment effects are computed by applying the appropriate set of weights to the estimated MTE function. Theoretically, the LATE result should be exactly equal to the IV; variation from this is attributable to the choice of functional form and bandwidth in the local linear estimation. Estimates are computed using only the sample with 1 lottery entrant in household.
6 Reconciling Effects from Oregon with Effects from Massachusetts

We have shown that the marginal treatment effect of health insurance on emergency room utilization was positive for some types of individuals and negative for others in the OHIE. Thus, the external validity of the OHIE depends on the types of individuals in the external applications of interest. Here, we focus on the Massachusetts health reform as the external application of interest, and we attempt to reconcile the decrease in emergency room visits observed in Massachusetts with the results from the OHIE using MTE methods.

Before undertaking this exercise, we acknowledge that there are several factors that could have differed between both empirical contexts that MTE methods will not address directly. At a fundamental level, the Oregon expansion was an RCT and the Massachusetts reform was a state-wide policy. Therefore, the Oregon study is more likely to produce partial equilibrium impacts that are internally consistent, and the Massachusetts health reform is more likely to produce general equilibrium impacts that have issues with internal consistency. Furthermore, institutional features of the health care environment could differ across states. As discussed by [Miller 2012], Massachusetts had an uncompensated care pool that might have encouraged excess emergency care before its dissolution and replacement under the Massachusetts health reform. Also, both states could have different social norms regarding emergency room vs. primary care usage. Health insurance terms could also differ, especially since Oregon expanded Medicaid alone and Massachusetts also expanded other types of coverage. MTE methods will hinge on differences in observable individual-level demographic characteristics; other differences will manifest themselves as differences in unobservables.

Table 4 presents observable demographic characteristics from the OHIE and Massachusetts side-by-side. The data from the Massachusetts health reform are the same data from the Behavioral Risk Factor Surveillance System (BRFSS) used by [Kolstad and Kowalski 2012], restricted to include only individuals from Massachusetts. As shown in the top row, these data do not include any measures of emergency room utilization, but they do allow us to compare individual-level characteristics from the Massachusetts health reform with individual-level characteristics from the OHIE. The data from the other published studies that examine the impact of the Massachusetts health reform on emergency room visits are not at the individual level, or they only include individuals who visit the emergency room, making them unsuitable for this exercise.
Table 4: Summary Statistics

<table>
<thead>
<tr>
<th>Summary Statistics</th>
<th>Oregon Health Insurance Experiment</th>
<th>Oregon (Compliers)</th>
<th>Massachusetts Health Reform</th>
<th>Massachusetts (Compliers)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Y (Any ER visit)</td>
<td>0.37</td>
<td>0.38</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Y (Number of ER visits, censored)</td>
<td>1.12</td>
<td>1.20</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Z (Selected in Oregon lottery)</td>
<td>0.34</td>
<td>0.34</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Z (Massachusetts, Post-Reform)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.42</td>
<td>0.42</td>
</tr>
<tr>
<td>D (Any insurance)</td>
<td>0.40</td>
<td>0.34</td>
<td>0.92</td>
<td>0.42</td>
</tr>
<tr>
<td>D (Medicaid)</td>
<td>0.24</td>
<td>0.34</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lottery entrants in household</td>
<td>1.00</td>
<td>1.00</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Number of adults in household</td>
<td>-</td>
<td>-</td>
<td>1.86</td>
<td>1.86</td>
</tr>
<tr>
<td>Age in 2009</td>
<td>40.7</td>
<td>42.6</td>
<td>42.0</td>
<td>42.5</td>
</tr>
<tr>
<td>Female</td>
<td>0.56</td>
<td>0.53</td>
<td>0.51</td>
<td>0.43</td>
</tr>
<tr>
<td>English</td>
<td>0.91</td>
<td>0.92</td>
<td>0.96</td>
<td>0.86</td>
</tr>
<tr>
<td>Number of Observations</td>
<td>19,643</td>
<td>6,200</td>
<td>62,541</td>
<td></td>
</tr>
</tbody>
</table>

Oregon summary statistics are calculated using the sample of observations with 1 lottery entrant in household. English is defined as an individual choosing materials that are written in English. Massachusetts summary statistics are derived from the MA sample in the Behavioral Risk Factor Surveillance System 2004-2009. Note that for this sample, there are more people in the treatment group than in the control group because we have more years of data in the post-reform period than in the pre-reform period. The pre-reform period spans 2004 through March 2006. The post-reform period spans July 2007 through 2009. The during-reform period, which spans April 2006 through June 2007, has been excluded from the analysis.

To examine the Massachusetts health reform, we can define an alternative instrument Z that indicates whether the individual was in the sample post-reform. As discussed in the table notes, the Massachusetts sample includes slightly less data in the post-reform period (42%). Overall, the Massachusetts sample from the BRFSS includes 62,541 individuals, making it much larger than our primary OHIE sample of 19,643 individuals.

In the full Massachusetts sample with the individuals from before and after the reform pooled, rates of any health insurance coverage are 92% over the entire period, which is much higher the 40% rate of coverage in the OHIE sample, which includes those who won and lost the lottery, suggesting that the two samples likely consisted of very different people. The BRFSS data do not include a variable that indicates whether health insurance coverage was through Medicaid.
As above, we restrict the OHIE sample to include only individuals in household with exactly one lottery entrant. Unfortunately, the OHIE administrative data do not include information on household size - we only know the number of lottery entrants. In the Massachusetts data, the average individual is from a household with 1.86 individuals.

The next three rows compare the “common controls” available in the Oregon data and the Massachusetts data. As shown, the Oregon individuals are younger, they are more likely to be female, and they are less likely to speak English. The subsequent column repeats the statistics reported in Column (9) of Table 1, and the final column reports similar statistics for the Massachusetts sample. From this exercise, we see that compliers in Oregon are even younger, more female, and less likely to speak English than compliers in Massachusetts.

To further investigate the compliers in Massachusetts, we estimate propensity scores for the probability of obtaining health insurance coverage using the same logit model from Oregon with the Massachusetts data and with the instrument Z defined as post-reform. We plot the histogram of the propensity scores in Massachusetts in Figure 4.

Figure 4: Distribution of Propensity Scores in Massachusetts
When we compare this figure to the analogous Figure 1 from Oregon, we notice several differences. One difference is that always takers comprise the bulk of the sample in Massachusetts at each propensity score, even though they had a much more limited prevalence in Oregon. This makes sense because the sample of people who signed up for a health insurance lottery in Oregon included relatively few individuals who would obtain health insurance coverage regardless of whether they won the lottery. In contrast, the vast majority of Massachusetts residents had coverage before the reform, and the reform did not change their coverage. In fact, it is very difficult to see the counts of control compliers or treatment compliers in Massachusetts because there are so many always takers.

Figure 5 includes only the compliers so that it is easier to discern their distribution. It also reports fractions of observations in each bin as opposed to counts of observations in each bin, where the fractions have been calculated so that the treatment (after reform) and control (before reform) groups have equal mass. This rescaling allows us to better visualize how the instrument (the reform) shifted the probability of insurance to the right, bound by the upper limit of full insurance. Large visual differences in the observed distributions of control compliers and treatment compliers would raise concerns about the validity of the Massachusetts health reform as a quasi-experiment.

Another striking difference between Figure 1 and Figures 4 and 5 is that there is much more mass to the right of the histogram in Massachusetts than there is in Oregon, which reflects the higher average probability of having health insurance coverage. There was almost no mass above a propensity score of 0.7 in Oregon, but almost all of the mass occurs above a propensity score of 0.7 in Massachusetts. If we interpret the propensity scores to be the observed benefit of treatment, then the observed benefit of treatment is much higher than it is in Oregon. Therefore, individuals who are at the margin of purchasing health insurance in Massachusetts must have much higher unobserved costs of purchasing health insurance in Massachusetts relative to Oregon. This interpretation of the distribution of propensity scores makes intuitive sense because individuals in the OHIE sample who were uninsured signed up for a lottery for health insurance coverage, but individuals in the Massachusetts sample who were uninsured were encouraged to purchase coverage through the subsidies and mandates established by the Massachusetts health reform.

Putting this differently, there could have been more “selection on moral hazard” in the spirit of Einav et al. [2013] in Oregon than there was in Massachusetts. Indeed, Finkelstein et al. [2012] finds evidence of “selection on moral hazard” within the OHIE in the sense that individuals who signed up for the lottery on the first day had larger...
Having established that the Oregon compliers had different observable characteristics than the Massachusetts compliers and thus different propensity scores, we can use those differences in observable characteristics to predict what should have happened to emergency room utilization following the Massachusetts health reform using the LATE weights calculated from the Massachusetts data applied to the MTE function estimated using the Oregon data.

Figure 6 reports the empirical weights estimated in the Massachusetts data. As discussed regarding the analogous Figure 2 from Oregon, the LATE weights seem to have a strong relationship with the propensity scores of the compliers. Just as most of the compliers have very high propensity scores, the LATE weights put the most weight on very high propensity scores.

In fact, the LATE weights are almost entirely above the support of the Oregon data, so we cannot directly apply the Massachusetts weights to the Oregon MTE without extrapolating the Oregon MTE to the right. As discussed above, the red dashed lines in Figure 3 give the linear extrapolation, which shows that the treatment effect of health insurance on emergency room utilization is negative to the right of the Oregon support. Miller [2012] finds that individuals who gained health insurance takeup and utilization point estimates than individuals who signed up later.
coverage through the Massachusetts health reform had 0.5 fewer emergency room visits per year. Some reasonable extrapolation from the MTE could yield a negative point estimate of a similar magnitude. However, the results that we obtain for the Massachusetts LATE in this way are very sensitive to the type of extrapolation that we perform. Rather than reporting a point estimate, we simply conclude that the Oregon MTE function implies that the LATE impact of the Massachusetts health reform on emergency room utilization was negative, as shown by the literature. We have thus reconciled results from Oregon and results from Massachusetts using MTE methods.

7 Treatment Effect Heterogeneity

The key to our reconciliation of the Oregon and Massachusetts results is the finding that the marginal treatment effect of health insurance on emergency room utilization was positive for some types of individuals and negative for others in the OHIE. In this section, we consider whether the standard method to examine treatment effect heterogeneity would have yielded a similar finding. The standard method to examine treatment effect heterogeneity is to break the estimation sample
into subgroups and to estimate the main results within those subgroups.

Table 5 presents results from standard subgroup analysis in our OHIE estimation sample. Column (1) repeats results from the baseline specification for comparison purposes, and Columns (2)-(7) stratify the sample into subgroups based on each of the “common controls” available in Oregon and Massachusetts. We see heterogeneity across some subgroups. For example, coefficients are larger for women than they are for men. However, within almost all subgroups, we see positive coefficients, indicating that insurance increases emergency room utilization. We only see negative coefficients in the subgroup of respondents that requested materials in a language other than English. The subgroup analysis reported by Taubman et al. [2014] in Table S14 yields similar results. On the whole, subgroup analysis suggests that health insurance increases emergency room utilization for all or almost all types of individuals.

Table 5: OHIE Treatment Effect Heterogeneity

<table>
<thead>
<tr>
<th>Any Emergency Room Visits</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any insurance</td>
<td>0.0453**</td>
<td>0.00445</td>
<td>0.0913***</td>
<td>0.0574**</td>
<td>-0.101</td>
<td>0.0453</td>
<td>0.0453</td>
</tr>
<tr>
<td>(0.023)</td>
<td>(0.0322)</td>
<td>(0.0320)</td>
<td>(0.0239)</td>
<td>(0.0693)</td>
<td>(0.0284)</td>
<td>(0.0367)</td>
<td></td>
</tr>
<tr>
<td>Control variables</td>
<td>Common Controls</td>
</tr>
<tr>
<td>Regression sample</td>
<td>1 Lottery Entrant</td>
<td>1 Lottery Entrant and female</td>
<td>1 Lottery Entrant and male</td>
<td>1 Lottery Entrant and English</td>
<td>1 Lottery Entrant and not English</td>
<td>1 Lottery Entrant and older than median age</td>
<td>1 Lottery Entrant and younger than median age</td>
</tr>
<tr>
<td>Observations</td>
<td>19,643</td>
<td>10,943</td>
<td>8,700</td>
<td>17,892</td>
<td>1,751</td>
<td>9,827</td>
<td>9,816</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.033</td>
<td>0.028</td>
<td>0.036</td>
<td>0.018</td>
<td>0.023</td>
<td>0.036</td>
<td>0.030</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of Emergency Room Visits</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any insurance</td>
<td>0.227*</td>
<td>0.1000</td>
<td>0.370**</td>
<td>0.257**</td>
<td>-0.139</td>
<td>0.136</td>
<td>0.344*</td>
</tr>
<tr>
<td>(0.123)</td>
<td>(0.172)</td>
<td>(0.175)</td>
<td>(0.131)</td>
<td>(0.248)</td>
<td>(0.151)</td>
<td>(0.202)</td>
<td></td>
</tr>
<tr>
<td>Control variables</td>
<td>Common Controls</td>
</tr>
<tr>
<td>Regression sample</td>
<td>1 Lottery Entrant</td>
<td>1 Lottery Entrant and female</td>
<td>1 Lottery Entrant and male</td>
<td>1 Lottery Entrant and English</td>
<td>1 Lottery Entrant and not English</td>
<td>1 Lottery Entrant and older than median age</td>
<td>1 Lottery Entrant and younger than median age</td>
</tr>
<tr>
<td>Observations</td>
<td>19,622</td>
<td>10,932</td>
<td>8,690</td>
<td>17,871</td>
<td>1,751</td>
<td>9,816</td>
<td>9,806</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.022</td>
<td>0.021</td>
<td>0.023</td>
<td>0.014</td>
<td>0.033</td>
<td>0.024</td>
<td>0.020</td>
</tr>
</tbody>
</table>

*** p<0.01, ** p<0.05, * p<0.1, standard errors clustered at the household ID level

"Lottery Entrants" indicates the number of lottery entrants in the Oregon experiment within a given household. Common controls are gender, English speaker, and indicator variable for each age. All two-way interactions between control variables are also included. Column 1 replicates the results of our baseline IV specification from Table 1 Column 7 on the sample of individuals with 1 lottery entrant in household. Columns 2 through 7 present the results of applying our baseline IV specification to samples restricted based on covariate values.
However, it is possible that standard subgroup analysis along observable dimensions obscures treatment effect heterogeneity along unobservable dimensions. For example, although the coefficient estimated among women only is positive, there could be some women with positive treatment effects and other women with negative treatment effects. To further investigate this claim, we divide the sample into smaller subgroups based on all three “common controls.” We identify all distinct cells based on all combinations of gender, English speaking status, and age in years, resulting in 176 distinct subgroups, and we re-run our baseline regression within each subgroup. In Figure 7 we present histograms that report the distribution of estimated IV coefficients across all subgroups, with the “any visits” outcome on the left and the “number of visits” outcome on the right. This finer subgroup analysis tells a different story - it appears that just under half of subgroups yield negative coefficients.

A natural follow-up question involves asking who is in the subgroups with negative IV coefficients. We present summary statistics on these individuals in Table 6. Column (3) shows that in our finer subgroup analysis, around 40% of individuals have negative IV coefficients for the “any visit” outcome, and Column (4) shows that a slightly higher fraction of individuals have negative IV coefficients for the “number of visits” outcome. Comparing the characteristics of these individuals with the characteristics of individuals in the full sample, reported in Column (1), we see that individuals in subgroups with negative IV coefficients are older, more likely to be female, and less likely

\[^3\text{The cell sizes in some subgroups are very small. We re-ran our analysis using only subgroups with 100 or more observations, and the results were similar.}\]
to be English speakers. Individuals in subgroups with negative IV coefficients also appear more likely to be female and less likely to be English speakers than the average compliers, as reported in Column (2).

Table 6: Summary Statistics on Individuals with Negative IV Coefficients and Negative MTE

<table>
<thead>
<tr>
<th>Summary Statistics</th>
<th>Oregon Health Insurance Experiment (Compliers)</th>
<th>Oregon Negative IV coefficient-Any ER visit</th>
<th>Oregon Negative IV coefficient-Number of ER visits</th>
<th>Oregon Negative MTE - Any ER visit</th>
<th>Oregon Negative MTE - Number of ER visits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>Y (Any ER visit)</td>
<td>0.37</td>
<td>0.38</td>
<td>0.36</td>
<td>0.37</td>
<td>0.37</td>
</tr>
<tr>
<td>Y (Number of ER visits, censored)</td>
<td>1.12</td>
<td>1.20</td>
<td>1.06</td>
<td>1.08</td>
<td>1.11</td>
</tr>
<tr>
<td>Z (Selected in Oregon lottery)</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
<td>0.71</td>
</tr>
<tr>
<td>Z (Massachusetts, Post-Reform)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>D (Any insurance)</td>
<td>0.40</td>
<td>0.34</td>
<td>0.42</td>
<td>0.40</td>
<td>0.53</td>
</tr>
<tr>
<td>D (Medicaid)</td>
<td>0.24</td>
<td>0.34</td>
<td>0.26</td>
<td>0.24</td>
<td>0.35</td>
</tr>
<tr>
<td>Lottery entrants in household</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Number of adults in household</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Age in 2009</td>
<td>40.7</td>
<td>42.6</td>
<td>42.6</td>
<td>41.9</td>
<td>38.7</td>
</tr>
<tr>
<td>Female</td>
<td>0.56</td>
<td>0.53</td>
<td>0.72</td>
<td>0.59</td>
<td>0.60</td>
</tr>
<tr>
<td>English</td>
<td>0.91</td>
<td>0.92</td>
<td>0.88</td>
<td>0.90</td>
<td>0.88</td>
</tr>
<tr>
<td>Number of Observations</td>
<td>19,643</td>
<td>6,200</td>
<td>7,811</td>
<td>8,726</td>
<td>6,968</td>
</tr>
</tbody>
</table>

Oregon summary statistics are calculated using the sample of observations with 1 lottery entrant in household. English is defined as an individual choosing materials that are written in English. To obtain the results in Columns 3 and 4 we run our baseline specification within each age-female-english cell. Column 3 presents summary statistics for individuals in age-female-english cells that yield a negative IV coefficient with Any ER visit as dependent variable. Column 4 presents summary statistics for all individuals in age-female-english cells that yield a negative IV coefficient with Any ER visit as dependent variable. Column 5 presents Oregon summary statistics for individuals in the bins with a negative MTE for Any ER visit. Column 6 presents Oregon summary statistics for individuals in the bins with a negative MTE for Number of ER visits.

Another approach to examine the characteristics of individuals likely to have negative marginal treatment effects is to examine the individuals predicted to have negative marginal treatment effects directly. Using the same bins of the percentiles of unobserved heterogeneity U_D used for estimation, we identify all individuals in bins with negative marginal treatment effects and report summary statistics on them in Columns (5) and (6) of Table 6. About 35% of the sample has a negative estimated marginal treatment effect for the “any visit” outcome, and about 25% of the sample has a negative estimated marginal treatment effect for the “number of visits” outcome. The conclusion that these individuals are less likely to be English speakers than individuals in the full sample is visible in this comparison too. This finding is consistent with the evidence from the standard subgroup analysis and the finer subgroup analysis. This finding is also potentially
consistent with the subgroup analysis from Taubman et al. [2014], which does not divide the sample along this dimension. Perhaps individuals who do not speak English are less likely to increase their emergency room utilization when they gain access to health insurance.

Our analysis has shown that MTE methods can illuminate treatment effect heterogeneity that can go undetected with standard subgroup analysis. However, the treatment effect heterogeneity that the MTE identifies along the unobservable dimensions does appear to have a basis along the observable dimension. Finer subgroup analysis suggests that individuals with negative marginal treatment effects have similar observable characteristics to individuals with negative IV coefficients in the sense that they are less likely to be English speakers.

One limitation of subgroup analysis is that it requires large treatment effects or really large samples to detect treatment effect heterogeneity. MTE methods can also be underpowered at detecting treatment effect heterogeneity. However, by maintaining assumptions that incorporate evidence from subgroups with similar propensities of taking up treatment, they require less power. In future work, I would like to attempt to increase the power of MTE methods by using machine learning methods to select the included covariates.

8 Robustness

In all of the reported results, we have focused on the sample of households with a single lottery entrant on the grounds that households similar to those will be easier to identify in other contexts. To examine robustness, we repeat the analysis on the sample of households with two or more entrants and on the pooled sample that includes all households regardless of the number of entrants and an additional covariate separating households with one entrant from other households. We report the results in Appendix D.

We first consider the sample of households with two or more lottery entrants. As shown through the comparison of Figure D1 to Figure 1, participants in this sample have higher propensities of obtaining health insurance than participants with a single lottery entrant, as predicted based on the same set of demographic characteristics. Furthermore, as shown in Figure D2, the participants with high propensities of obtaining health insurance among this sample get the highest weights in the LATE estimate.
Figure D3 reports the estimated MTE function on the sample of participants with two or more lottery entrants in their household. The vertical axis in this figure covers a much wider range than the vertical axis is the corresponding Figure 3 for participants with a single household lottery entrant, and most of the marginal treatment effects are more positive. Furthermore, the line fit to the MTE, depicted in red, is upward sloping. Given that the LATE on this sample places the most weight toward the right of the support, it is not surprising that the LATE estimated on this sample is much larger than the LATE obtained in the sample with a single lottery entrant, as previously shown in Columns (5) and (6) of Table 1. Table D1 shows the treatment effects obtained by weighting the MTE function and shows similarly large LATE estimates for both estimates of the dependent variable, estimated less precisely.

When we pool the sample of households with two or more lottery entrants with the primary estimation sample with a single lottery entrant, we see more mass in higher propensity scores of Figure D1 and the LATE weights in Figure D5 continue to place weight in the same ranges as the sample that includes a single lottery entrant. The MTE function in this pooled sample, reported in Figure D6 shows substantial heterogeneity. It is negative in some ranges and positive in others, and it increases toward the right of the range. However, the line fit to the MTE and the LATE reported in Table D2 mask this heterogeneity, showing only a positive impact of health insurance on emergency room utilization.

Given the patterns in the MTE that we observed in the sample of 2 or more lottery entrants on its own and the distribution of propensity scores in that sample, it seems likely that participants in that sample are responsible for the upward slope in the MTE function toward the higher values of the percentiles of U_D. If we extrapolated from Oregon to Massachusetts using the MTE function from the pooled sample, we would be likely to conclude that emergency room utilization would increase even more in Massachusetts than it did in Oregon. However, such extrapolation might not be reasonable because marginal individuals who gain health insurance in Massachusetts are unlikely to be similar to individuals in Oregon who had more than one lottery entrant in their household. Therefore, we prefer extrapolation based on our main sample.
9 Experimental Design for External Validity

The exercise of applying MTE methods to the OHIE has brought to light several issues that could be considered in the design of future experiments to maximize the usefulness of MTE methods in examining external validity. The first issue is that a wide array of covariates should be collected to aid in tracing out a nonlinear MTE function. Ideally, these covariates should be defined such that they can also be obtained from other experimental or non-experimental data. By defining covariates in a standardized fashion, the MTE function from one context such as Oregon can be applied to another such as Massachusetts.

A second issue is that covariates used for stratification should be defined such that they can also be obtained from other experimental or non-experimental data. In the case of the OHIE, recall that multiple members of the same household could sign up for the health insurance lottery independently. However, if any member of the household won the lottery, then all members of the household were treated as winners. Thus, individuals in households with multiple entrants had a higher probability of winning. As shown in Table 1, the main results show that emergency room utilization increased in response to increased insurance in Column (1) depend on a control for the number of lottery entrants. If that control is removed as in Column (4), then the effect reverses sign, and it loses its statistical significance. To be clear, stratifying on the number of lottery entrants creates no problems for internal validity, but external validity is harder to assess because it is unlikely that other data sets will contain information on how many household members would enter a lottery were one to be offered.

A third issue is that there must be data on always takers, never takers, and compliers to estimate the MTE function via the separate estimation approach. If researchers do not collect follow-up data on experimental subjects who lose the lottery but attain the intervention by other means, then always takers cannot be identified. Because the OHIE researchers collected data on such individuals who lost the lottery but gained health insurance through other means, the MTE function can be estimated. However, if they did not collect such data, as is common in clinical trials, then only one of the separate pieces of the MTE function could be estimated.

A subtler issue is that the experiment or quasi-experiment must be designed such that always takers and never takers are possible. If there is no way to attain the intervention outside the
lottery (no “always takers”) or if all participants who win the lottery take up the intervention (no “never takers”), then the full MTE function cannot be estimated. For example, in their empirical application, Brinch et al. [2012] cannot estimate the full MTE because there are no never takers who have twins but do not end up with an extra child.

A related issue is that going to great lengths to encourage all participants who win the lottery to receive the intervention, and conversely to discourage all participants who lost the lottery to forgo intervention, could decrease the external validity of the estimates obtained. It could also limit the ability of the researchers to use the estimates to produce externally relevant ones. In the extreme case, if there is no selection into or out of treatment, then the MTE cannot be estimated. In that case, the local average treatment effect (LATE) will be equal to the average treatment effect (ATE). However, if the policy intervention based on the experiment will allow individuals to select into or out of treatment, then the researchers might prefer an alternative LATE to the ATE for purposes of external validity. For example, as shown in Table 3 in the OHIE application, the ATE is larger than the LATE, meaning that if the policy intervention required everyone to select into health insurance, then emergency room visits would increase by even more than they did under the OHIE. Realistic policy interventions would probably be more likely to offer health insurance for free or to require individuals to pay a penalty if they choose not to select into health insurance, so the ATE might not be the parameter of interest.

Another manifestation of going to great lengths to encourage full takeup of the experimental lottery is that the estimated ATE could be smaller than the LATE that would result from an externally relevant policy. In the OHIE context, we find that the ATE is larger than the LATE. However, the ATE could be smaller than the LATE in other contexts. For example, suppose that the individuals with the largest benefits from a new medical intervention select into treatment first after winning the lottery. Encouraging others to select into treatment will reduce the LATE, bringing it closer to the ATE, and making the intervention appear less effective. In this way, companies that hope to show a benefit of a new medical intervention could attain smaller estimates if they are more diligent about encouraging full takeup. Furthermore, unless the relevant policy intervention would involve full takeup, these smaller estimates will not be externally valid.
10 Conclusion

I examine the external validity of the Oregon Health Insurance Experiment (OHIE) using marginal treatment effect (MTE) methods. A central finding from the OHIE is that individuals who gained health insurance through the OHIE lottery increased their emergency room utilization (Taubman et al. [2014]). Using data from the OHIE, I find that the marginal treatment effect of health insurance on emergency room utilization was positive for some types of individuals and negative for others. Thus, the external validity of the finding that emergency room utilization increases when health insurance expands depends on the types of individuals who gain coverage.

Using data from Kolstad and Kowalski [2012], I reexamine the types of individuals who gained coverage through the Massachusetts health reform, which established a mandate for uninsured individuals to purchase coverage or pay a penalty, among other interventions. I find that the Massachusetts individuals induced to gain health insurance appear more similar to the Oregon individuals that decreased their emergency room utilization than they do to the Oregon individuals that increased their emergency room utilization. Furthermore, on the whole, individuals who entered a lottery for health insurance coverage in Oregon likely had a higher desire to use the emergency room than individuals who gained coverage when a mandated required them to do so in Massachusetts. Therefore, it is not surprising that that literature finds decreases in emergency room utilization in Massachusetts despite increases in Oregon because the two state policy interventions expanded coverage to different types of individuals.

Given that my findings deepen our understanding of the external validity of the OHIE, I conclude that MTE methods will be a valuable addition to the standard toolkit for analysis of experiments and quasi-experiments with binary treatments. However, marginal treatment effects do not supplant existing methods to used to examine external validity. There are several factors that could have differed between both empirical contexts, including those explicitly taken into account by MTE methods, such as the demographic characteristics of participants, and those that are not explicitly taken into account by MTE methods, such as institutional features of emergency rooms. Based on my analysis, I highlight several research design considerations that can maximize the ability of MTE methods to shed light on external validity in future applications.
References

Appendices

A Weights

LATE Weights

\[\omega_{LATE}(x, u_D) = \frac{(E(J|P(W) > u_D, X = x) - E(J|X = x)) \Pr(P(W) > u_D|X = x)}{\text{Cov}(J, D|X = x)} \] (4)

ATE Weights

\[\omega_{ATE}(x, u_D) = 1 \] (5)

ATT Weights

\[\omega_{ATT}(x, u_D) = \frac{\Pr(P(W) > u_D|X = x)}{\int \Pr(P(W) > u_D|X = x) du_D} \] (6)

ATUT Weights

\[\omega_{TUT}(x, u_D) = \frac{\Pr(P(W) \leq u_D | X = x)}{\int \Pr(P(W) \leq u_D | X = x) du_D} \]

(7)

B MTE Estimation Algorithm

Step 1

We estimate a logit model of treatment \(D \) on \(W \), which consists of the instrument \(Z \) and the covariates \(X \). We do not interact \(Z \) with \(X \), although \(X \) does include interaction terms. Using the coefficient estimates, we predict a propensity score \(\mu_D(W) \) for each individual. In our context, this propensity score represents the probability of having insurance for an individual with a given vector of covariates \(X = x \) and a given value of the instrument \(Z = z \).

Step 2

Next, we define the maximum interval of common support for the propensity score conditional on \(D = 1 \), and the propensity score conditional on \(D = 0 \). We drop those observations outside of the common support.

Step 3

We next transform our propensity score into a new propensity score \(P(W) \equiv F_{U_D}(\mu_D(W)) \) defined as the quantiles of the estimated propensity score. This step represents a departure from [Brinch et al. 2012]. The advantage of our approach is that each point in the support of the new propensity score has the same number of observations (approximately because we allow for ties between observations with the same values \(x \) and \(z \)). [Brinch et al. 2012] trim the sample of untransformed propensity scores \(\mu_D(W) \) within the common support from Step 2 by a further 1% at both ends. Instead, we trim our sample based on the transformed propensity scores \(P(W) \), only reporting estimates below above the 10th percentile and below the 90th percentile. We choose an estimation grid \(\mathcal{P} \) with associated bandwidth \(h \) within this range. Once it is chosen, we keep it fixed for all subsequent steps, including each replication of the bootstrap routine.
Step 4

In Equation (3), we have expressed the MTE as

\[MTE(x, p) = E(Y_1 - Y_0 | X = x, U_D = p) = (\beta_1 - \beta_0)'x + k(p). \]

In this step, we begin the “separate estimation approach:” we separately estimate \(\beta_1 \) and \(\beta_0 \) using double residual regression (we turn to estimating \(k(p) \) in Step 5). We perform double residual regression one time to estimate \(\beta_0 \) using the sample conditional on \(D = 0 \) and a second time to estimate \(\beta_1 \) using the sample conditional on \(D = 1 \). For each double residual regression, we first run a local linear regression of \(Y \) on \(P(W) \), using the grid \(\mathcal{P} \) determined in Step 3. We save the residual and call it \(e_Y \), following Heckman et al. [2006]. We next run a local linear regression of each value \(x \) on \(P(W) \) and save the residual, calling it \(e_X \). Finally, we run a regression of \(e_Y \) on all of the saved values of \(e_X \). The coefficients we estimate are \(\beta_0 \) when the sample is restricted to \(D = 0 \) and \(\beta_1 \) when the sample is restricted to \(D = 1 \).

Step 5

Next, we turn to estimating the function \(k(p) \). As with \(\beta_1 \) and \(\beta_0 \), we must separately estimate functions \(K_1(p) \) and \(K_0(p) \). To estimate \(K_1(p) \), we begin by defining \(\tilde{Y}_1 \) as

\[\tilde{Y}_1 = Y - \beta_1 X = K_1(P(W)) + v. \]

We obtain coefficient estimates for \(K_1(p) \) by running local linear regression of \(\tilde{Y}_1 \) on the propensity score \(P(W) \) at each of the points in our grid \(\mathcal{P} \). We estimate \(K_0 \) similarly, with \(\tilde{Y}_0 \) instead defined as

\[\tilde{Y}_0 = Y - \beta_0 X = K_0(P(W)) + v. \]

Step 6

The unobservable component of the MTE, \(k(p) \), is defined as

\[k(p) = k_1(p) - k_0(p), \]
which gives the difference between the unobservable component of Y_1 given the treatment $D = 1$, and the unobservable component of Y_0 given the absence of treatment $D = 0$. $k_1(p)$ is the derivative of $K_1(p)$ with respect to p, and $k_0(p)$ is the derivative of $K_0(p)$ with respect to p. Using the formulas on page 7 of Brinch et al. [2012] and $K_1(p)$ and $K_0(p)$ obtained in Step 5, we calculate $k_1(p)$ and $k_0(p)$. We take the difference between $k_1(p)$ and $k_0(p)$ to obtain $k(p)$.

Step 7

With β_1, β_0, and $k(p)$ estimated, we can finally calculate our MTE using Equation (3). Again, the formula is

$$MTE(x, p) = (\beta_1 - \beta_0)'x + k(p).$$

This gives us the MTE as a function of each set of characteristics x and each point p in our grid \mathcal{P}. To present the MTE as a function only of p, which we report in the figures, we take the weighted average MTE over the characteristics x at each point p in our grid \mathcal{P}.

C Average Marginal Effects from Logit Model
Table C1: Any Insurance Decision Model - Average Marginal Effects

<table>
<thead>
<tr>
<th>Variable</th>
<th>Any Insurance</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z (Selected in Oregon lottery)</td>
<td>0.289***</td>
<td>(0.00558)</td>
</tr>
<tr>
<td>Female</td>
<td>0.105***</td>
<td>(0.00657)</td>
</tr>
<tr>
<td>English</td>
<td>0.0440***</td>
<td>(0.0115)</td>
</tr>
<tr>
<td>Age ≤ 21</td>
<td></td>
<td>-0.00142 [0.000]</td>
</tr>
<tr>
<td>Age = 22</td>
<td>0.00474</td>
<td>(0.00285)</td>
</tr>
<tr>
<td>Age = 23</td>
<td>0.0105</td>
<td>(0.00276)</td>
</tr>
<tr>
<td>Age = 24</td>
<td>-0.0332</td>
<td>(0.00280)</td>
</tr>
<tr>
<td>Age = 25</td>
<td>-0.0215</td>
<td>(0.00280)</td>
</tr>
<tr>
<td>Age = 26</td>
<td>0.0252</td>
<td>(0.00284)</td>
</tr>
<tr>
<td>Age = 27</td>
<td>0.0334</td>
<td>(0.00267)</td>
</tr>
<tr>
<td>Age = 28</td>
<td>-0.0237</td>
<td>(0.00273)</td>
</tr>
<tr>
<td>Age = 29</td>
<td>0.0421</td>
<td>(0.00274)</td>
</tr>
<tr>
<td>Age = 30</td>
<td>0.0175</td>
<td>(0.00282)</td>
</tr>
<tr>
<td>Age = 31</td>
<td>0.039</td>
<td>(0.00287)</td>
</tr>
<tr>
<td>Age = 32</td>
<td>0.0134</td>
<td>(0.00279)</td>
</tr>
<tr>
<td>Age = 33</td>
<td>0.0329</td>
<td>(0.00297)</td>
</tr>
<tr>
<td>Age = 34</td>
<td>-0.0079</td>
<td>(0.00290)</td>
</tr>
<tr>
<td>Age = 35</td>
<td>0.0701**</td>
<td>(0.00298)</td>
</tr>
<tr>
<td>Age = 36</td>
<td>0.00852</td>
<td>(0.00299)</td>
</tr>
<tr>
<td>Age = 37</td>
<td>0.0147</td>
<td>(0.00298)</td>
</tr>
<tr>
<td>Age = 38</td>
<td>-0.00467</td>
<td>(0.00286)</td>
</tr>
<tr>
<td>Age = 39</td>
<td>0.0190</td>
<td>(0.00289)</td>
</tr>
<tr>
<td>Age = 40</td>
<td>0.0059</td>
<td>(0.00284)</td>
</tr>
<tr>
<td>Age = 41</td>
<td>-0.0188</td>
<td>(0.00290)</td>
</tr>
<tr>
<td>Age = 42</td>
<td>0.0277</td>
<td>(0.00299)</td>
</tr>
<tr>
<td>Observations</td>
<td>19,643</td>
<td></td>
</tr>
<tr>
<td>Mean of D in control group</td>
<td>0.29</td>
<td>Mean of D in treatment group 0.61</td>
</tr>
</tbody>
</table>

*** p<0.01, ** p<0.05, * p<0.1

Standard errors, clustered at the household ID level, in parentheses.
The results displayed in this table are average marginal effects computed using the estimates from a logit model in which we included all of these variables and all two-way interactions between the control variables (i.e. all variables displayed, except for the instrument Z).
D Robustness Tables and Figures

Figure D1: Distribution of Propensity Scores in Oregon: 2+ Lottery Entrants
Figure D2: MTE Weights: 2+ Lottery Entrants

MTE Weights

Oregon Administrative Data, 2+ Lottery Entrants in Household

Table D1: Treatment Effects: 2+ Lottery Entrants

<table>
<thead>
<tr>
<th>Treatment Effect</th>
<th>Any ER Visits</th>
<th>Number of ER Visits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Average Treatment Effect (LATE)</td>
<td>0.141 (2.440)</td>
<td>0.474 (6.959)</td>
</tr>
<tr>
<td>Average Treatment Effect (ATE)</td>
<td>0.145 (0.063)**</td>
<td>0.511 (0.236)**</td>
</tr>
<tr>
<td>Treatment on the Untreated (ATUT)</td>
<td>0.228 (0.114)*</td>
<td>0.632 (0.426)</td>
</tr>
<tr>
<td>Treatment on the Treated (ATT)</td>
<td>0.053 (0.080)</td>
<td>0.296 (0.257)</td>
</tr>
</tbody>
</table>

Block bootstrapped standard errors in parentheses. To obtain these standard errors, we block bootstrap by household ID for 200 replications, and we report the standard deviation of the replications as an estimate of the standard error.

*** p<0.01, ** p<0.05, * p<0.1

Treatment effects are computed by applying the appropriate set of weights to the estimated MTE function. Theoretically, the LATE result should be exactly equal to the IV; variation from this is attributable to the choice of functional form and bandwidth in the local linear estimation. Estimates are computed using the sample with 2+ lottery entrants in household.
Figure D3: MTE: 2+ Lottery Entrants

Any Emergency Room Visits

Number of Emergency Room Visits

Oregon Administrative Data, 2 Lottery Entrants in Household
Bootstrapped 95% CIs indicated by thin dashed lines

MTE Weighted Linear MTE
Figure D4: Distribution of Propensity Scores in Oregon: Pooled Lottery Entrants

Figure D5: MTE Weights: Pooled Lottery Entrants
Figure D6: MTE: Pooled Lottery Entrants

Any Emergency Room Visits

Number of Emergency Room Visits

Oregon Administrative Data, Pooled Sample
Bootstrapped 95% CIs indicated by thin dashed lines

MTE Weighted Linear MTE
Table D2: Treatment Effects: Pooled Lottery Entrants

<table>
<thead>
<tr>
<th>Treatment Effects</th>
<th>Any ER Visits</th>
<th>Number of ER Visits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Average Treatment Effect (LATE)</td>
<td>0.065</td>
<td>0.316</td>
</tr>
<tr>
<td></td>
<td>(0.031)**</td>
<td>(0.122)**</td>
</tr>
<tr>
<td>Average Treatment Effect (ATE)</td>
<td>0.087</td>
<td>0.445</td>
</tr>
<tr>
<td></td>
<td>(0.025)***</td>
<td>(0.107)***</td>
</tr>
<tr>
<td>Treatment on the Untreated (ATUT)</td>
<td>0.080</td>
<td>0.460</td>
</tr>
<tr>
<td></td>
<td>(0.034)**</td>
<td>(0.156)***</td>
</tr>
<tr>
<td>Treatment on the Treated (ATT)</td>
<td>0.083</td>
<td>0.390</td>
</tr>
<tr>
<td></td>
<td>(0.032)***</td>
<td>(0.128)***</td>
</tr>
</tbody>
</table>

Block bootstrapped standard errors in parentheses. To obtain these standard errors, we block bootstrap by household ID for 200 replications, and we report the standard deviation of the replications as an estimate of the standard error.

*** p<0.01, ** p<0.05, * p<0.1

Treatment effects are computed by applying the appropriate set of weights to the estimated MTE function. Theoretically, the LATE result should be exactly equal to the IV; variation from this is attributable to the choice of functional form and bandwidth in the local linear estimation.

Estimates are computed using only the pooled sample of households with all numbers of lottery entrants.