Global Value Chains: Spiders and Snakes
Stanford Department Seminar

Pol Antràs

Harvard University

November 18, 2016
Three Major Developments

Three major developments in the world economy in the last 30 years:

1. Information and communication technology (ICT) revolution
2. Deepening of trade liberalization and continuing transportation cost reduction
3. Political developments expanding the reach of globalization

- An implication: Gradual disintegration of production across borders
- Topology of GVCs: Spiders and Snakes (Baldwin and Venables, 2013)
A Spider: Boeing’s Dreamliner
A Snake: Manufacturing a Chip
Why Should We Care?

- Does it matter that about two-thirds of world trade is in intermediate inputs instead of final goods?
- Does it matter that trade relationships are often initiated by importers seeking to procure inputs from foreign suppliers?
- Current workhorse trade models focus on the extensive and intensive margin decisions of exporters selling finished products worldwide.
- Is this without loss of generality?
Today I want to highlight some novel features that arise when analyzing and estimating *multi-country global sourcing models*.

1. **Spiders:** Overview of Antràs, Fort and Tintelnot (2016)

2. **Snakes:** Preview of ongoing work with Alonso de Gortari
Spiders: Antràs, Fort and Tintelnot (2016)
The Margins of Trade

- Suppose that your interpret world trade flows (or U.S. imports more narrowly) as the legs of spiders

- Firms make decisions of where (extensive margin) to source inputs from and how much (intensive margin) to buy of each input

- **Fact:** Extensive margin accounts for most of the cross-country variation in U.S. imports

- **Fact:** Superior performance (size, labor productivity, TFP) of importers
Superior Performance of Importers

- Graph showing the relationship between the minimum number of countries from which a firm sources and the premium with 95% confidence interval.

- The premium increases as the minimum number of countries increases.

- The 95% confidence interval is also shown, indicating the range within which the true premium is likely to fall.
Challenges for a Multi-Country Global Sourcing Model

- In canonical models of exporting, firms assumed to have constant marginal costs unaffected by trade decisions
 - Easy to handle various margins of trade

- But importing inputs naturally affects the marginal cost of the firm!

- Import entry decisions are thus **interdependent** across markets

- Interdependencies across markets complicate the firm’s decision
 - Which countries should a firm invest in importing from?
 - From which particular country should each input be bought?
 - How much of each input should be purchased?
Main Contributions of Antràs, Fort and Tintelnot (2016)

- Develop a quantifiable multi-country sourcing model
 - Characterization of intensive and extensive margins of global sourcing
 - Eaton-Kortum (2002) and multi-country Melitz (2003) are special cases

- Develop methodology to solve firm’s problem with interdependencies
 - Apply theoretical insights and IO algorithm to estimate model
 - Counterfactual analysis of shock to China’s sourcing potential

- Study effects of shocks to global sourcing
 - Distinguish net vs. gross changes in sourcing / employment
 - Reduced-form evidence consistent with these predictions
Environment

- J countries
- Measure of L_j consumers / workers
- **Preferences**: Dixit-Stiglitz over manufacturing varieties, elasticity of substitution $\sigma > 1$ (later introduce non-manufacturing sector)

Final good sector produces these varieties:
- Measure N_j of heterogeneous firms (pinned down by free entry)
- Firms characterized by core productivity ϕ
- Monopolistic competition
- Non-tradable final output

Intermediate good sector
- Each firm uses a unit measure of intermediate inputs (next slide)
- Trade cost τ_{ij} to import from country j by country i
- Perfect competition \implies Marginal-cost pricing of inputs
Marginal cost of final good producer φ based in i is:

$$c_i \left(\left\{ j(v) \right\}_{v=0}^1, \varphi \right) = \frac{1}{\varphi} \left(\int_0^1 (p_i(v, j(v)))^{1-\rho} \, dv \right)^{1/(1-\rho)}$$
Marginal cost of final good producer φ based in i is:

$$c_i \left(\{ j(v) \}_{v=0}^1, \varphi \right) = \frac{1}{\varphi} \left(\int_0^1 \left(\tau_{ij(v)} a_j(v) w_j(v) \right)^{1-\rho} dv \right)^{1/(1-\rho)}$$
Production Technology

Marginal cost of final good producer φ based in i is:

$$c_i \left(\{ j(v) \}_{v=0}^1, \varphi \right) = \frac{1}{\varphi} \left(\int_0^1 \left(\tau_{ij}(v) a_j(v) (v) w_j(v) \right)^{1-\rho} dv \right)^{1/(1-\rho)}$$

Tricky to characterize equilibrium in terms of a_j’s
Production Technology

- Marginal cost of final good producer φ based in i is:

$$c_i \left(\left\{ j \left(v \right) \right\}_{v=0}^1, \varphi \right) = \frac{1}{\varphi} \left(\int_0^1 \left(\tau_{ij}(v) a_j(v) (v) w_j(v) \right)^{1-\rho} dv \right)^{1/(1-\rho)}$$

- Tricky to characterize equilibrium in terms of a_j's
- Productivity $1/a_j(v)$ for a given location j drawn from Fréchet distribution:

$$\text{Pr}(a_j(v) \geq a) = e^{-T_j a^\theta}, \text{ with } T_j > 0.$$
Production Technology

- Marginal cost of final good producer φ based in i is:

$$c_i \left(\{ j(v) \}_{v=0}^1, \varphi \right) = \frac{1}{\varphi} \left(\int_0^1 \left(\tau_{ij}(v) a_j(v) w_j(v) \right)^{1-\rho} dv \right)^{1/(1-\rho)}$$

- Tricky to characterize equilibrium in terms of a_j’s

- Productivity $1/a_j(v)$ for a given location j drawn from Fréchet distribution:

$$\Pr(a_j(v) \geq a) = e^{-T_j a^\theta}, \text{ with } T_j > 0.$$

- Country-specific fixed cost of offshoring $w_i f_{ij}$
Firm’s problem

- Firm chooses:
 - Sourcing strategy $J_i(\phi) \subseteq \{1, \ldots, J\}$
 - Source country $j(\nu) \in J_i(\phi)$ for each intermediate ν
 - Quantity of each input $j(\nu)$ purchases
 - Price of final good

- Sourcing strategy thus determines set of countries from which firm can buy inputs
Firm Behavior Conditional on Sourcing Strategy

- Share of intermediate input purchases sourced from any country j:

 $$
 \chi_{ij} (\varphi) = \frac{T_j (\tau_{ij} w_j)^{-\theta}}{\Theta_i (\varphi)} \quad \text{if } j \in J_i (\varphi)
 $$

- Sourcing potential of country j (for firms in i): $T_j (\tau_{ij} w_j)^{-\theta}$

- Sourcing capability of firm φ in i:

 $$
 \Theta_i (\varphi) \equiv \sum_{k \in J_i (\varphi)} T_k (\tau_{ik} w_k)^{-\theta}
 $$

- Marginal cost:

 $$
 c_i (\varphi) = \frac{1}{\varphi} (\gamma \Theta_i (\varphi))^{-1/\theta}
 $$
Optimal Sourcing Strategy

- **Profit Function:**

\[
\max_{l_{ij} \in \{0,1\}} \varphi^{\sigma-1} \left(\gamma \sum_{j=1}^{J} l_{ij} T_j (\tau_{ij} w_j)^{-\theta} \right)^{(\sigma-1)/\theta}
B_i - w_i \sum_{j=1}^{J} l_{ij} f_{ij}
\]
Optimal Sourcing Strategy

- **Profit Function:**

\[
\max_{l_{ij} \in \{0,1\}^J} \varphi^{\sigma-1} \left(\gamma \sum_{j=1}^{J} l_{ij} T_j (\tau_{ij} w_j)^{-\theta} \right)^{(\sigma-1)/\theta} B_i - w_i \sum_{j=1}^{J} l_{ij} f_{ij}
\]

- **Proposition 1.** The solution \(l_{ij}(\varphi) \in \{0,1\}^J \) to the optimal sourcing problem is such that:

(a) a firm’s sourcing capability \(\Theta_i(\varphi) = \sum_{j=1}^{J} l_{ij}(\varphi) T_j (\tau_{ij} w_j)^{-\theta} \) is nondecreasing in \(\varphi \);

(b) if \((\sigma - 1) / \theta \geq 1 \), then \(J_i(\varphi_L) \subseteq J_i(\varphi_H) \) for \(\varphi_H \geq \varphi_L \), where \(J_i(\varphi) = \{j : l_{ij}(\varphi) = 1\} \).
Optimal Sourcing Strategy

- **Profit Function:**

\[
\max_{l_{ij} \in \{0, 1\}_{j=1}^J} \varphi^{\sigma-1} \left(\gamma \sum_{j=1}^J l_{ij} T_j (\tau_{ij} w_j)^{-\theta} \right)^{\frac{(\sigma-1)}{\theta}} B_i - w_i \sum_{j=1}^J l_{ij} f_{ij}
\]

- **Proposition 2.** Define the mapping \(V_j(\varphi, \mathcal{J}) \) taking a value of one whenever including country \(j \) in the sourcing strategy \(\mathcal{J} \) raises firm-level profits \(\pi_i(\varphi, \mathcal{J}) \), and taking a value of zero otherwise. Then, whenever \((\sigma - 1) / \theta \geq 1 \), \(V_j(\varphi, \mathcal{J}') \geq V_j(\varphi, \mathcal{J}) \) for \(\mathcal{J} \subseteq \mathcal{J}' \).

- This result will be instrumental for reducing the dimensionality of the optimal sourcing problem.
Proposition 3. Holding constant the market demand level B_i, whenever $(\sigma - 1) / \theta \geq 1$, an increase in the sourcing potential $T_j (\tau_{ij} w_j)^{-\theta}$ or a reduction in the fixed cost f_j of any country j, (weakly) increases the input purchases by firms in i not only from j, but also from all other countries.

Corollary. There may exist complementarities between domestic and foreign sourcing.
Structural Estimation
Data

- 2007 data from the U.S. Census Bureau
 - Economic Censuses
 - Import transactions data

- Sample is all manufacturing firms (around 250,000 firms)
 - Include firms with non-manufacturing activity
 - 23% of employment and 38% of sales
 - 65% of (non-mining) imports
 - A quarter of these firms imports

- Structural Estimation
 - Limit analysis to countries with 200+ U.S. importers
 - 66 countries and the U.S.

- Reduced form evidence on interdependencies
 - Balanced panel of manufacturing firms in 1997 and 2007
 - UN Comtrade data; 1997 BEA Input-Output tables
Some Firm-level Import Statistics

- Count of distinct source locations and products imported by a firm

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>25th Ptile</th>
<th>Median</th>
<th>95th Ptile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country Count</td>
<td>3.26</td>
<td>5.09</td>
<td>1</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>Product Count</td>
<td>11.91</td>
<td>48.89</td>
<td>1</td>
<td>3</td>
<td>41</td>
</tr>
</tbody>
</table>

- Although extreme, the continuum of inputs assumption helps a lot
Overview of Estimation

- **Step 1:** Back out sourcing potential from firm-level input shares
 - Recovered from country fixed effects in normalized share regressions

- **Step 2:** Estimate demand elasticity and productivity dispersion
 - Project fixed effect on human-capital adjusted labor cost

- **Step 3:** Estimate fixed costs of sourcing and residual demand
 - Simulated method of moments + Jia’s (2008) algorithm

\[
\Pi(\mathcal{J}, \varphi, f_{ij}^n) = \varphi^{\sigma-1} \left(\sum_{j=1}^{J} T_j (\tau_{ij}w_j)^{-\theta} \right)^{(\sigma-1)/\theta} - \sum_{j \in \mathcal{J}} f_{ij}^n
\]
Sourcing Potential vs. Fixed Cost Estimates
Counterfactual: China Shock

- Negative shock to China’s sourcing potential to match 1997 share of China importers (38% of its 2007 level)

- Resolve for equilibrium price index and mass of new firms

- Calculate impact from going back to 2007 sourcing potential values

- Compare baseline model predictions to models with alternative parameter values that imply:
 - Universal importing
 - Independent entry decisions
 - Common fixed costs
Baseline Results

<table>
<thead>
<tr>
<th>Chinese import status</th>
<th>Change sourcing from US</th>
<th>Change Sourcing from other countries</th>
<th>Share of firms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrants</td>
<td>1.008</td>
<td>1.015</td>
<td>0.066</td>
</tr>
<tr>
<td>Continuers</td>
<td>1.002</td>
<td>1.002</td>
<td>0.019</td>
</tr>
<tr>
<td>Others</td>
<td>0.994</td>
<td>0.986</td>
<td>0.915</td>
</tr>
</tbody>
</table>

- Aggregate sourcing from the U.S. is reduced by 0.60 percent.
- For every 10 domestic manufacturing jobs destroyed, 2 new jobs are created (and we do not allow for exports!)
- Manufacturing price index falls by 0.2%.
Reduced-Form Evidence

Reduced-Form Comparison to the Data

- Model predicts increased domestic and third market sourcing by China importers

\[\Delta y_n = \beta_0 + \beta_{Ch} \Delta \text{China}_n + \varepsilon_n \]

- \(\Delta \text{China}_n = \frac{\text{Imports}_{n2007}^{Ch} - \text{Imports}_{n1997}^{Ch}}{(\text{Imports}_{n2007}^{Ch} + \text{Imports}_{n1997}^{Ch})/2} \)

- \(\Delta y_n \) is 1997 to 2007 change in firm \(n \)'s:
 - log domestic inputs
 - DHS growth rate of non-China imports
 - log number of non-China source countries

- OLS estimates clearly problematic \(\implies \) use IV strategy similar to Autor, Dorn and Hanson (2013) but on the input side
Estimates of the China Shock on Firm Sourcing

Dependent variable is change from 1997 to 2007 in firm n:

<table>
<thead>
<tr>
<th></th>
<th>Domestic inputs</th>
<th>No. of countries</th>
<th>Foreign inputs</th>
<th>Domestic inputs</th>
<th>No. of countries</th>
<th>Foreign inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OLS</td>
<td></td>
<td></td>
<td>IV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>China, DHS</td>
<td>0.084***</td>
<td>0.255***</td>
<td>0.360***</td>
<td>0.934***</td>
<td>0.553***</td>
<td>0.654***</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.007)</td>
<td>(0.013)</td>
<td>(0.258)</td>
<td>(0.080)</td>
<td>(0.197)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.069***</td>
<td>0.144***</td>
<td>0.315***</td>
<td>-0.064</td>
<td>0.097***</td>
<td>0.269***</td>
</tr>
<tr>
<td></td>
<td>(0.023)</td>
<td>(0.013)</td>
<td>(0.026)</td>
<td>(0.047)</td>
<td>(0.017)</td>
<td>(0.044)</td>
</tr>
<tr>
<td>Adj. R^2</td>
<td>0.00</td>
<td>0.11</td>
<td>0.05</td>
<td>127,400</td>
<td>127,400</td>
<td>127,400</td>
</tr>
<tr>
<td>N</td>
<td>127,400</td>
<td>127,400</td>
<td>127,400</td>
<td>127,400</td>
<td>127,400</td>
<td>127,400</td>
</tr>
</tbody>
</table>

First Stage Statistics

<table>
<thead>
<tr>
<th>Coeff (se)</th>
<th>2.691*** (0.504)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KP Fstat</td>
<td>28.51</td>
</tr>
</tbody>
</table>

Notes: All variables are changes or growth rates from 1997 to 2007. Standard errors are in parentheses and clustered by 439 NAICS industries. N rounded for disclosure avoidance.
Snakes: Antràs and de Gortari (2016)
A Snake: Manufacturing a Chip
Sequential Production and Trade Costs

- Consider optimal location of production for the different stages in a sequential GVC

- Without trade frictions \(\approx \) model with spiders
 - Conditional on a set of sourcing locations, minimize each input's sourcing cost independently

- With trade frictions, matters become trickier

- Location of a stage takes into account upstream and downstream locations
 - Where is the good coming from? Where is it going to?
 - Need to solve jointly for the optimal path of production
Main Contributions of Antràs and de Gortari (2016)

- Develop a general-equilibrium model of GVCs with a general geography of trade costs across countries

1. Characterize the optimality of a centrality-downstreamness nexus
 - Consistent with evidence from *Factory Asia*

2. Develop tools to solve the problem in high-dimensional environments
 - Reformulate problem so it is solvable with DP and LP techniques
 - Illustrate transition from domestic to regional to global value chains
Main Contributions of Antràs and de Gortari (2016)

1. Develop a general-equilibrium model of GVCs with a general geography of trade costs across countries
 - Characterize the optimality of a centrality-downstreamness nexus
 - Consistent with evidence from *Factory Asia*

2. Develop tools to solve the problem in high-dimensional environments
 - Reformulate problem so it is solvable with DP and LP techniques
 - Illustrate transition from domestic to regional to global value chains

3. Develop a tractable multi-stage variant of the Eaton-Kortum (2002) framework for an arbitrary number of countries and sequential stages
 - Facilitates quantitative analysis using world I-O tables
Model: General Environment
Environment

- There are J countries (indexed by i or j) where consumers derive utility from consuming a set of final-good varieties (indexed by z).

- Consumer goods produced combining N stages (indexed by n) that need to be performed sequentially using a unique factor (labor).
 - The last stage N can be interpreted as assembly.

- Countries can in principle differ in their:
 - **Labor productivity**: unit labor requirements $a_n^i(z)$.
 - **Geography**: $J \times J$ matrix of iceberg trade coefficients τ_{ij} proportional to value of good being shipped.
 - **Size**: each country i is populated by L_i consumers, each inelastically supplying one unit of labor.
Sequential Production Technology

- Stage n technology for good z:

$$y_i^n(z) = f_z^n\left(\frac{L_i^n(z)}{a_i^n(z)}, c_i^{n-1}(z)\right)$$

for all n, i, z,

where

$$c_i^n(z) = \sum_{j=1}^{J} \frac{\delta_{ji}^n(z)}{\tau_{ji}} y_j^n(z),$$

for all n, i, z,

with some initial vector of c_i^0’s.

- Applies also to assembly $y_i^N(z)$ and final-good consumption $c_i^N(z)$

- Can solve recursively to express final consumption in terms of value added in all stages
Example: A Symmetric Cobb-Douglas Snake

- Assume a Cobb-Douglas technology with a single source of components at each stage

\[y_{\ell(n)}^n = \left(\frac{L_{\ell(n)}^n}{a_{\ell(n)}^n} \right)^{1/n} \left(c_{\ell(n)}^{n-1} \right)^{1-1/n} ; \quad c_{\ell(n)}^{n-1} = \frac{y_{\ell(n)}^{n-1}}{\tau_{ji}} \]

- This delivers:

\[y_{\ell(n)}^N = \prod_{i=1}^{N} \left(\frac{L_{\ell(n)}^n}{a_{\ell(n)}^n} \right)^{1/N} \times \left(\tau_{\ell(n-1)\ell(n)} \right)^{-\frac{n-1}{N}} \]

- Unless \(\tau_{\ell(n-1)\ell(n)} = \tau \), can no longer minimize costs stage-by-stage

- Incentive to reduce trade costs increases as one moves downstream
Isolating Trade Costs
One-to-One Assignment with $N = J$

- Consider the case with just one final good and log utility

Lemma 1 (Modified TSP)

In the even case $N = J$, the optimal one-to-one assignment of stages to countries seeks to solve

$$
\min_{\{\ell(n)\}_{n=1}^N} H(\ell(1), \ldots, \ell(N)) = \sum_{i=1}^{N} \Lambda_i N \ln \tau_{\ell(N)i} + \sum_{n=1}^{N-1} n \ln \tau_{\ell(n)\ell(n+1)},
$$

where $\Lambda_i = \lambda_i L_i / \sum_{i=1}^{J} \lambda_i L_i$.

- Connection to Traveling Salesman Problem
 - But ‘traveling salesman’ is getting increasingly tired
Optimal Pure Snake in Factory Asia: Production
‘Empirical Fit’
A Probabilistic Approach
A Multi-Stage Eaton-Kortum Model

- Assume preferences are

 \[u \left(\left\{ c_i^N(z) \right\}_{z=0}^1 \right) = \left(\int_0^1 \left(c_i^N(z) \right)^{(\sigma-1)/\sigma} \, dz \right)^{\sigma/(\sigma-1)} \quad \sigma > 1 \]

- Technology features CRS and Ricardian technological differences

 \[y_i^n(z) = \left(\frac{L_i^n(z)}{a_i^n(z)} \right)^{1/n} \left(c_i^{n-1}(z) \right)^{1-1/n} \]

- If a production chain follows the path \(\{ \ell(1), \ell(2), \ldots, \ell(N) \} \), then

 \[\log \left(\Pr \left(\prod_{n=1}^N a_{\ell(n)}^n(z) \geq a \right) \right) = -a^\theta \prod_{n=1}^N T_{\ell(n)} \]

- Randomness can be interpreted as uncertainty on compatibility
Some Results

- Likelihood of a particular GVC ending in \(i \) is

\[
\Pr (\ell(1), \ell(2), ..., \ell(N); i) = \frac{\prod_{n=1}^{N-1} A_{\ell(n)} \left(\tau_{\ell(n)}\ell(n+1) \right)^{-\theta n} \times A_{\ell(N)} \left(\tau_{\ell(N)}i \right)^{-\theta N}}{\Theta_i}
\]

where \(A_j = T_j \left(w_j \right)^{-\theta} \) and \(\Theta_i \) is the sum of the numerator over all possible country permutations.

- Notice that trade costs again matter more downstream than upstream.

- Can compute final-good trade shares and intermediate input shares as explicit functions of \(A_j \)'s and trade costs.
The Centrality-Downstreamness Nexus

- Define the average upstreamness \(U(\ell; i) \) of production of a given country \(\ell \) in value chains that seek to serve consumers in country \(i \):

\[
U(\ell; i) = \sum_{n=1}^{N} (N - n + 1) \times \frac{\Pr(\ell = \ell(n); i)}{\sum_{n'=1}^{N} \Pr(\ell = \ell(n'); i)}
\]

- Closely related to upstreamness measure in Antràs et al. (2012)

- If \(\tau_{ij} = (\rho_i \rho_j)^{-1} \) for \(i \neq j \) and \(\tau_{ii} = \zeta (\rho_i \rho_i)^{-1} \) with \(\zeta < 1 \):

Proposition (Centrality-Upstreamness Nexus)

The average upstreamness \(U(\ell) \) of a country in global value chains is decreasing in its centrality \(\rho(\ell) \).
Empirical Application
Calibration to World-Input Output Database

- We next map our multi-country Ricardian framework to world Input-Output Tables.
- World Input Output Database: Released in 2012.
- 35 sectors.
- 40 countries (85% of world GDP) + ROW.
- Provides information on input and final output flows across countries.
Calibration to World-Input Output Database

<table>
<thead>
<tr>
<th>Supply from country-industries</th>
<th>Use by country-industries</th>
<th>Final use by countries</th>
<th>Total use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industry 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>…</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industry N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>…</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industry 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>…</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industry N</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Value added by labour and capital

Gross output

Figure 1. Schematic Outline of a World Input–Output Table (WIOT)

Figure: Timmer et al. (2015)
Targeting Final-Good Shares

- We target final good shares, which are functions of $A_j = T_j (w_j)^{-\theta}$ and $\rho_{ij} = (\tau_{ij})^{-\theta}$

- Use gravity estimates (Head and Mayer, 2014) to back out trade costs
 - Distance, contiguity, common language, colonial link, RTAs, common currency

- Introduce additional wedge Z that magnifies foreign trade costs relative to domestic ones

- Can use $(J - 1) \times (J - 1)$ WIOD final-good shares and labor-market clearing (or trade balance) to estimate Z, T_j and w_j for $j = 1, \ldots, J$

- We set $\theta = 5$ and $N = 3$ to match an aggregate gross-output to value-added ratio of 2
Fit of the Model

Final Consumption Shares: All - LogLog Scale

Input Shares: All - LogLog Scale
Counterfactuals

- A 50 percent reduction in foreign trade costs (wedge Z)

![GVC Participation Index Chart]

- Benchmark
- 50% Fall in Trade Costs
Counterfactuals

- A 50 percent reduction in foreign trade costs (wedge Z)
Regional versus Non-Regional GVC Integration

- As Z falls, GVCs first become more regional and then more global.
Real Income Gains

- Autarky Counterfactual: GVC Model vs. Eaton-Kortum with I-O loop
Conclusions

- We have developed frameworks to study how technology and geography shape the location of production along GVCs
- Both for **Spiders** and for **Snakes**
- Frameworks deliver novel qualitative insights, but can also be used to quantitatively assess the implications of the rise of GVCs
- I view this work as a stepping stone for a future analysis of the role of **man-made** trade barriers in GVCs
 - Should countries use policies to place themselves in particularly appealing segments of global value chains?
 - What is the optimal shape of those policies?