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Abstract

This paper investigates the effect of export shocks on innovation. On the one hand a
positive shock increases market size and therefore innovation incentives for all firms. On the
other hand it increases competition as more firms enter the export market. This in turn re-
duces profits and therefore innovation incentives particularly for firms with low productivity.
Overall the positive impact of the export shock on innovation is magnified for high produc-
tivity firms, whereas it may negatively affect innovation in low productivity firms. We test
this prediction with patent, customs and production data covering all French manufacturing
firms. To address potential endogeneity issues, we construct firm-level export proxies which
respond to aggregate conditions in a firm’s export destinations but are exogenous to firm-level
decisions. We show that patenting robustly increases more with export demand for initially
more productive firms. This effect is reversed for the least productive firms as the negative
competition effect dominates.
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1 Introduction

In this paper we combine modeling insights from the literature on firm heterogeneity and

trade (see Melitz and Redding, 2014 for a survey) into the new growth theory (e.g., see Aghion

and Howitt, 2009). The former literature has focused on the causality link from productivity to

trade whereas the latter literature has focused on the reverse link from trade to productivity by

investigating the various channels whereby trade liberalization affects innovation-led productivity

growth across firms. Our model derives testable predictions on how firms’ access to export markets

affects innovation; and how this link will vary across exporters. We then take advantage of the

availability of exhaustive firm-level data on productivity, trade, and patenting in France to test

these predictions.

Figure 1 below motivates our analysis. The curve depicts, for each percentile in exports, the

share of French innovative firms within that percentile. It clearly shows a positive relationship

between exports and innovation.1 One of the most striking features that emerges from our merged

production-export-innovation dataset is a massive correlation between export and innovation per-

formance across firms. This holds both at the extensive margin (exporters are substantially more

likely to innovate, and innovators are more likely to export) as well as the intensive margin (large

exporters tend to be big innovators and vice-versa). We describe these relationships in much more

detail in Section 3. Does this correlation reflect a causal effect of export on innovation, or the

effect of innovation on exports, or both? How does the innovation behavior of a firm react to

its export markets’ conditions? Our paper is a first attempt at understanding these firm-level

patterns connecting innovation and trade using the matching between patenting, balance sheet,

and customs exhaustive datasets.

In the first part of the paper we develop a simple model of trade and innovation with heteroge-

neous firms. The model is one with monopolistic competition and heterogeneous firm capabilities,

but adds the innovation dimension of new growth theory to it. It features a continuous set of

firms indexed by their heterogeneous production costs. Innovation allows firms to reduce their

production costs by an amount that increases with the size of the innovation investment. Think of

French firms that export to China. An increase in Chinese demand for products produced by these

firms will have two main effects on their innovation incentives. First, a direct market size effect:

namely, the expanded market for exports will increase the size of innovation rents and thereby

1Obviously the relationship shown in Figure 1 is partly driven by a scale effect: large exporters are larger firms
and larger firms are more likely to innovate. However, as we will see below, the distribution of export is more
skewed than the distribution of sales or value added. In addition, the positive relationship still exists when centiles
of exports intensity (exports divided by sales) are used.
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Figure 1: The share of innovators jumps at the top of the export distribution

Notes: Centiles of exports are computed each year from 1995 to 2012 separately and then pooled together. For each centile, we compute
the share of innovators. Each centile contains the same number of firms, except for centile 0 that contains all the firms with no export.
Manufacturing firms only.

increase those firms’ incentives to invest more in innovation. Second, a competition effect: namely,

the expanded market for exports will attract new firms into the Chinese market as more firms find

it profitable to sell there their product; this in turn will raise competition for exporters into that

market. Due to the nature of competition between firms – featuring endogenous markups – this

effect dissipates the larger is the firm’s market share (and hence its productivity). This competi-

tion effect is therefore most salient for French firms with initially lower market shares and higher

production costs (these firms will suffer more than -or at the expense of- more efficient exporting

firms). Hence our prediction that a positive export shock should raise innovation more in more

frontier firms; and that it may induce less innovation for those firms that are far from the frontier.

In the second part of the paper we take this prediction to the data. More specifically, we merge

three exhaustive firm-level datasets – patenting, production, and customs data –, which cover the

whole population of French firms to analyze how the access to export markets affects the quantity

and quality of patents generated by these firms. The patent data are drawn from PATSTAT (Spring
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2016 version) and contain detailed information on all patents and patent applications from the

main patent offices in the world. We use an algorithm developed in Lequien et al. (in progress)

that matches a French firm’s name with its unique administrative identifier. This allows us to

link the innovation activities of a firm with all other firm data sources. The production datasets

FICUS and FARE, from INSEE/DGFiP, contain balance sheet information for each firm registered

in France from 1993 to 2012 (total and export sales, number of employees, sector, etc.). French

customs trade data (1993-2014) cover nearly comprehensive export flows by firm and destination at

a very detailed level of product disaggregation (over 10,000 product categories). We complement

these firm-level data sets with bilateral trade data from BACI (Gaulier and Zignago, 2010, updated

to cover the period 1995-2013) at the product level (at a slightly higher level of aggregation than

our French firm-level export data); and with country-level data (primarily GDP).

To disentangle the direction of causality between innovation and export performance, we con-

struct a firm-level export demand variable following Mayer et al. (2016). This variable responds

to aggregate conditions in a firm’s export destinations but is exogenous to firm-level decisions

(including the concurrent decisions for export-market participation and the forward looking inno-

vation response). We show that: (i) firms that are initially more productive (closer to their sector’s

technology “frontier”) strongly respond to a positive export demand shock by patenting more; (ii)

this effect dissipates for firms further from the “frontier” and is reversed for a subset of initially

less productive firms. These results confirm the predictions of the model for both a market size

and a competition effect of the export shock. Our theoretical model highlights how an industry

equilibrium with endogenous markups is key for this type of competition, which induces a reversal

in the innovation response across firms.

Our analysis relates to several strands of literature. There is first the theoretical literature

on trade, innovation and growth (see Grossman and Helpman, 1991a,b, Aghion and Howitt, 2009,

chapter 13, and more recently Akcigit et al., 2018)2. We contribute to this literature by uncovering

a new -indirect- effect of market size on innovation working through competition differences within

sectors;3 and by testing the overall effect of export expansion on innovation using exhaustive firm-

level data. Second, our paper relates to recent papers on import competition, innovation and

productivity growth (see Bloom et al., 2016; Iacovone et al., 2011; Autor et al., 2016; Bombardini

2Akcigit et al. (2018) develop and calibrate a new dynamic trade model where firms from different countries
compete strategically for leadership in domestic import and export markets. Their model predicts that trade
openness encourages innovation in advanced sectors and discourages it in backward sectors.

3Dhingra (2013) and Impullitti and Licandro (2018) also develop theoretical models with endogenous firm
innovation and endogenous competition (via endogenous markups). Dhingra (2013) focuses on the firm-level trade-
offs between innovation and product variety, whereas Impullitti and Licandro (2018) focuses on the consequences
of innovation for growth and welfare.
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et al., 2017). These papers show that increased import competition induces firms to innovate more

in order to escape competition as in Aghion et al. (2005).4 Instead we look at how the export side

of trade affects innovation and analyze a competition effect that varies across producers within

a sector. We find very strong empirical confirmation for this type of differential response across

firms.

Our paper is most closely related to Lileeva and Trefler (2010) and Bustos (2011), and the

ensuing empirical literature connecting exports to innovation at the firm-level.5 We add to those

analyses in three main respects: first, by uncovering an indirect- competition-enhancing effect of

increased export market size on innovation; second, by showing that this effect leads to heteroge-

neous innovation responses to the same market-size shock across firms (strongest for the frontier

firms and turning negative for the firms furthest from the frontier); and third, by documenting this

type of heterogeneous innovation response – including an innovation reversal for the least efficient

firms in a sector.

The remaining part of the paper is organized as follows. Section 2 develops our model of export

and innovation, and generates the prediction that the market size effect of a positive export shock,

is stronger for more frontier firms. Section 3 briefly presents the data and shows some descriptive

statistics on export and innovation. Section 4 describes our estimation methodology and presents

our empirical results and Section 5 concludes.

2 Theory

We start with a highly parametrized version of our model in order to highlight the key interac-

tions between market size and competition – leading to innovation reversals for the least productive

firms. We then discuss how this result extends to much more general functional forms.

This model is essentially an open economy long-run version of the model in Mayer et al.

(2014), augmented with innovation. French firms exporting to some export market destination

D are competing with local firms producing in D. We let L denote the number of consumers

in that destination, and indexes market size. These consumers have preferences over all varieties

available in D. There is a continuum of differentiated varieties indexed by i ∈ [0,M ], where M

is the measure of available products. Suppose that the demand for variety qi is generated by a

4Interestingly, in this paper we use firm-level competition data, whereas Aghion et al. (2005) as well as previous
papers by Nickell (1996) and Blundell et al. (1999) regress innovation and/or productivity growth on sectoral
measures of product market competition.

5In related work, Coelli et al. (2016) document the patenting response of firms in response to the Uruguay
round of tariff levels.
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representative consumer in country D with additively separable preferences with sub-utility:6

u(qi) = αqi −
βq2

i

2
,

where α > 0 and β > 0.

As this consumer makes no difference between a French or a locally produced variety, the

output, profit and revenues for the French exporters and local producers have the same expression.

For simplicity, we assume that both types of firms have access to the same innovation technology,

which leads to similar innovation decisions, but the results can be easily extended without this

assumption.

2.1 Consumer optimization

This representative consumer facing prices pi solves:

max
qi≥0

∫ M

0

u(qi)di s.t.

∫ M

0

piqidi = 1.

This yields the inverse residual demand function (per consumer):

p(qi) =
u′(qi)

λ
=
α− βqi

λ
, (1)

where λ =

∫ M

0

u′(qi)qidi > 0 is the corresponding Lagrange multiplier, also equal to the marginal

utility of income. Given the assumption of separable preferences, this marginal utility of income

λ is the unique endogenous aggregate demand shifter. Higher λ shifts all residual demand curves

downwards; we thus interpret this as an increase in competition for a given exogenous level of

market size L.

2.2 Firm optimization

Consider a (French or domestic) firm with marginal cost c facing competition λ. This firm

chooses the output per consumer q(c;λ) to maximize operating profits L [p(q)q − cq]. The corre-

6As we argue below, our analysis can be extended to a broader class of preferences that satisfy Marshall’s Second
Law of Demand (such that residual demand becomes more inelastic as consumption increases).
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sponding first order condition yields

q(c;λ) =
α− cλ

2β
, (2)

so long as the firm’s cost is below α/λ; the remaining firms with higher cost do not produce. This

output choice in turn leads to the maximized profit per consumer

π(c;λ) =
(α− cλ)2

4βλ
.

In particular, we see that both output and profit are decreasing in both firm level cost c and

the endogenous competition measure λ. More productive firms (with lower cost c) are larger and

earn higher profits than their less productive counterparts; and an increase in competition λ lowers

production levels and profits for all firms.

2.3 Innovation choice

A firm is characterized by its baseline cost c̃. It can reduce its marginal cost of production c

below its baseline cost by investing in innovation. More formally, we assume that

c = c̃− εk,

where k is the firm’s investment in innovation and ε > 0; and we assume that the cost of innovation

is quadratic in k, equal to cIk + 1
2
cI2k

2.7 Thus a firm with baseline cost c̃ will choose its optimal

R&D investment k(c̃;λ) so as to maximize total profit:

Π(c̃, k;λ) = Lπ(c̃− εk;λ)− cIk −
1

2
cI2k

2.

The optimal R&D investment k(c̃;λ), if positive, satisfies the first order condition:

εQ(c̃, k;λ) = cI2k + cI , (FOC)

7Since we only consider a single sale destination D for our firms, we are implicitly assuming that the innovation
is directed at the delivered cost to consumers in D. We should thus think of innovation as specific to the appeal/cost
trade-off to consumers in D. As we discuss in further detail later, our analysis extends to the more general case
where innovation affects (and responds to) changes in other destinations, as long as competition in other destinations
does not respond to changes in market D (namely market size).
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where Q(c̃, k;λ) ≡ Lq(c̃− εk;λ) = L[α− (c̃− εk)λ]/2β is the total firm output (across consumers)

produced by a firm with baseline cost c̃ and innovation k. We assume that the baseline cost c̃ is

bounded below by c̃min such that c̃min − εk(c̃min;λ) = 0, or equivalently

c̃min =
ε

cI2

(
εLα

2β
− cI

)
.

This in turn ensures that the post-innovation marginal cost is bounded away from zero, even for

the most productive firms.

Figure 2 depicts the optimal innovation choice at the intersection between the marginal cost

(MC, right-hand side of FOC) and the marginal benefit of innovation (MB, left-hand side of FOC).

As long as the marginal benefit is above the marginal cost of investing in R&D, the firm wants to

increase innovation, because the marginal profit made by investing one more unit of R&D, exceeds

its marginal cost. We assume that the second order condition holds, which ensures that the slope

of the marginal cost is strictly larger than the slope of the marginal gain (otherwise firms may end

up with infinite innovation), namely:

cI2 > ε
∂Q

∂k
=
ε2λL

2β
. (SOC)

When comparing a more productive firm (with lower baseline cost, depicted by the blue curve)

and a less productive firm (with higher baseline cost, depicted by the red curve), we see that both

firms face the same marginal cost curve and their marginal gain curves have the same slope. Only

the zero intercepts of the two marginal gain curves are different: the lower c̃ firms have a higher

intercept, thus a higher marginal gain, and therefore invest more in R&D. Firms with sufficiently

high baseline costs do not innovate, as the zero intercept of their marginal gain curves falls below

cI , so that even their first innovation unit would not be worth its cost. These are firms with

baseline costs above the baseline cost of the marginal innovator, which is equal to:

ĈI =
1

λ

(
α− 2βcI

εL

)
. (3)

2.4 The direct impact of an increase in market size or competition on

innovation

In the next section, we describe how an increase in market size L induces an endogenous increase

in competition λ in the destination market D. To build intuition on the combined impact of these
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Figure 2: Optimal innovation is higher for more efficient firms
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εLq(c̃1, λ)

demand-side changes for innovation, we first consider these effects separately. We first analyze the

direct effect of an increase in market size L, holding the competition level λ constant. At each

firm’s current innovation choice k(c̃;λ), this triggers a proportional increase in firm output, and

an upward shift in the marginal benefit of innovation, inducing all firms to increase innovation.

Figure 3 shows this innovation response for firms with different baseline costs. Both the inter-

cept and the slope of the marginal gain curve increase. We see how this leads to our unambiguous

prediction of higher innovation for all firms. Given our assumptions on the benefits and costs of

innovations, this leads to higher innovation responses for more productive firms:

∂2k

∂L∂c̃
< 0.

This increase in market size also induces some firms to begin R&D (higher ĈI , see 3).

We now consider the effect of an increase in competition λ, holding market size L constant.

At each firm’s current innovation choice k(c̃;λ), this triggers a decrease in firm output (see 2).

However, unlike the case of a change in market size L, this output response is no longer proportional

across firms: high cost firms bear the brunt of the competition increase and disproportionately lose

market share. Even though all firms respond by reducing innovation, this reduction in innovation

is most pronounced (larger) for those high cost firms:

∂2k

∂λ∂c̃
< 0.

This contrasts with the case of a market size decrease (leading to proportional output decreases),

which would lead to bigger innovation reductions for low cost firms instead. In the limit for
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Figure 3: Direct market size effect (increase in L)
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Figure 4: Competition effect (increase in λ)
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the most efficient firms (with baseline cost approaching c̃min), the negative impact of increased

competition on innovation dissipates completely (see FOC).

Figure 4 shows this innovation response for firms with different baseline costs. The increase in

competition decreases the marginal benefit of innovation, but substantially more for the high cost

firm – because the intercept decrease is larger (recall that the slope of the marginal benefit curve

does not change with the firm’s baseline cost).8 Thus, the high cost firm’s reduction in innovation

is most pronounced. The competition increase also induces some firms to stop R&D (lower ĈI ,

see 3).

In the next subsection we endogenize the competition variable λ by introducing a free entry

8The new dotted marginal benefit curve remains below the old one at least until it meets the marginal cost
curve, even though an increase in competition increases the slope of the marginal benefit curve.
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condition.

2.5 The induced competition effect of increased market size

We now describe how the equilibrium competition level λ in country D is endogenously deter-

mined and show that λ increases with L. This equilibrium involves all the firms operating in D,

including both the French exporters to D along with the domestic producers in D. However, in the

long-run with entry of domestic producers into D, we show that the equilibrium competition level

λ is determined independently of the export supply to D (which then only impacts the number

of domestic entrants and producers).9 Since innovation is inherently forward looking, we focus on

these long-run implications for competition.

Let ΓD(c̃) denote the cumulative distribution of baseline costs c̃ among domestic producers in

D. We assume that ΓD(c̃) has support on [c̃0D,+∞) with c̃0D > c̃min. Let FD denote the fixed

production cost faced by those domestic firms in D. Since a firm’s operating profit is monotonic

in its baseline cost c̃, producing for the domestic market D is profitable only for domestic firms

with a baseline cost c̃ below a cutoff value ĈD defined by the zero profit condition:

Π(ĈD, 0;λ) = FD, (ZCP)

where we have assumed that ĈD > ĈI so that the firm with the cutoff cost ĈD does not innovate

(and hence does not incur any innovation cost). In the long-run, entry is unrestricted subject to a

sunk entry cost FE
D . In equilibrium, the expected profit of a prospective entrant will be equalized

with this cost, yielding the free-entry condition:

∫ ĈD

c̃0D

[Π(c̃, k(c̃;λ);λ)− FD] dΓD(c̃) = FE
D . (FE)

Proposition 1 The two conditions (ZCP) and (FE) jointly determine a unique pair (λ, ĈD).

The proof is developed in A.1. It relies on the fact that (ZCP) is downward-sloping whereas

(FE) is upward sloping in (ĈD, λ) space. For simplicity, we have abstracted from any export profits

for the domestic firms. This is inconsequential for the qualitative predictions of our model that

we emphasize below – so long as changes in country D (in particular its market size) do not affect

9This is not the case in the short-run, where the export supply to D affects both the competition level λ as well
as the number of domestic producers.
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the equilibrium competition levels in those export markets. Essentially, the key assumption is that

market D is small relative to the size of the global export market.10

Proposition 2 An increase in market size L in D leads to an increase in competition λ in the

long-run.

Proof. We prove this proposition by contradiction. If λ were to decrease, then the cutoff ĈD

would have to increase (see (ZCP)). Since π(c;λ) is decreasing in λ, then Π(c̃, k;λ) must also

increase for any given innovation level k when λ decreases. Given the optimization principle,

Π(c̃, k(c̃;λ);λ) must also increase. This, together with an increase in the cutoff ĈD, represents a

violation of the (FE) condition. Thus competition λ must increase when L increases.

2.6 The overall effect of increased market size on innovation

We now analyze the overall effect of an increase in market size L on innovation resulting from

both the direct market size effect and the induced competition effect (increase in λ). Based on our

previous discussion, we already know that the overall innovation response for the most efficient

firms (those firms with the lowest baseline costs) will be positive. The reason is that the negative

impact of the induced increase in competition on innovation dissipates for the most efficient firms,

so that the positive direct market size effect must prevail for those firms.

As we move away from the technology frontier towards less efficient firms, the negative impact

of increased competition on innovation strengthens and is no longer negligible. This leads to lower

and lower innovation responses for firms as we move away from the technology frontier up the

baseline cost scale. The only remaining question is whether the overall impact of an increase in L

on innovation can indeed become negative for operating firms with sufficiently high baseline costs.

In order to show that this is the case, we first point out that – in response to any changes in market

conditions λ and L – innovation co-moves monotonically with firm output as well as its output at

a given innovation level k.

10More precisely, the free entry condition can be extended to incorporate the (net) export profits Π−D earned
in other destinations: ∫ ĈD

c̃0D

[Π(c̃, k(c̃;λ);λ)− FD + Π−D(c̃, k; {λ−D})] dΓD(c̃) = FE
D ,

where {λ−D} denotes the vector of competition levels in countries other than D. So long as these competition levels
{λ−D} do not respond to changes in D, the export profits shift up the marginal benefit of innovation in (FOC)
by an amount that does not depend on λ or L. This marginal benefit curve will remain an increasing function
of innovation k and will shift up with any market-wide change in D that increases firm output Q(c̃, k;λ) at fixed
innovation k. This is the key property that we rely on in our comparative statics for the impact of market size and
competition.
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Proposition 3 For a given innovating firm, innovation, output and output holding k fixed all

move comonotonically in response to a change in the market size L.

The proof is a straightforward extension of the first and second order conditions for optimal

innovation depicted in Figure 2. Any change in market conditions L or λ leading to an increase in

firm output Q(c̃, k;λ) at constant innovation k results in an upward shift of the marginal benefit

curve. This induces an increase in the optimal level of innovation (given the second order condition

ensuring that the marginal benefit curve cuts the marginal cost curve from above). This innovation

response further re-enforces the increase in firm output Q(c̃, k(c̃;λ);λ).

We have just shown that any changes in market size or competition that increase a firm’s

output choice (at its current innovation level) will induce this firm to increase innovation – and

vice-versa. In order to show that high cost firms reduce innovation in response to an increase in

market size, we need only show that this market size increase induces those firms to reduce output

at their current innovation levels (due to the increase in competition λ). This output response is

given by:
dQ

dL

∣∣∣∣
k fixed

=
∂Q

∂L
+
∂Q

∂λ

dλ

dL
= q(c̃− εk;λ)− Lc̃− εk

2β

dλ

dL
. (4)

As a firm’s baseline cost c̃ increases, the direct positive impact of the market size increase dimin-

ishes, whereas the negative impact due to increased competition strengthens. The positive impact

shrinks to zero in the limit as a firm’s marginal cost approaches the choke price α/λ that induces

no consumer demand q(α/λ;λ) = 0. Thus, the total output response must be negative for at

least some high cost firms. So long as those firms innovate, their innovation response to a market

size increase will be negative. Hence, whenever the set of innovating firms is broad enough – the

innovation threshold ĈI is high enough – then there will be an innovation reversal within this set

of firms. This will be ensured so long as the innovation cost cI is low enough, along with a low

fixed cost F to ensure that production is profitable for all innovating firms. More generally, in the

Appendix we establish:

Proposition 4 a) For any cost distributions Γ and ΓD, there exists values of cI and F such

that some high cost firms reduce their innovation when the market size L increases.

b) For any values of cI and F , there exists cost distributions Γ and ΓD and a range of L such

that some high cost firms reduce their innovation when the market size L increases within

that range.

Figure 5 illustrates this parameter configuration leading to an innovation reversal for the high

cost firm in response to an increase in market size L. Lastly, we note that this innovation reversal
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Figure 5: Overall response of innovation to an increase in market size L
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applies to French exporters in the same way that it does for domestic producers in D. It also applies

to a much more general version of our model without specific functional form representations for the

cost-saving benefit of innovation (replacing ε with a function of the baseline cost c̃ and innovation

k); the cost of innovation (a convex function of innovation k); and for preferences. The key

feature of the optimal innovation choice – linking the direction of the innovation response with

the direction of the change in firm output at a constant innovation level – would continue to

hold. Thus, an innovation reversal will occur for high baseline cost firms so long as a market size

increase induces a reduction in output for those firms. As discussed in Mayer et al. (2014), this

output reversal in response to market size increases will occur whenever residual demand satisfies

Marshall’s Second Law of Demand – whereby demand becomes more inelastic with consumption.

Importantly, such a reversal cannot occur under C.E.S. preferences and exogenous markups. The

competition increase induced by the endogenous response of the markups is a critical necessary

ingredient for the prediction of both output – and therefore innovation – reversals.

3 Exporters and Innovators: data and descriptive statis-

tics

In this section, we briefly present our datasets and show some descriptive evidence on the link

between firms’ innovation and exports. Further details about data construction can be found in

Appendix B.

14



3.1 Data sources

We build a database covering all French firms and linking export, production and innovation

data from 1994 to 2012. Our database draws from three sources: (i) French customs, which

reports yearly export flows at a very disaggregated HS8 product level (representing over 10,000

manufacturing products) by destination; (ii) Insee-DGFiP administrative fiscal datasets (FICUS

and FARE), which provide extensive production and financial information for all firms operating in

France; (iii) the Spring 2016 vintage of PATSTAT patent dataset from the European Patent Office,

which contains detailed information on all patent applications from many patent offices in the

world. In our analysis we will focus on all patent applications and on patents filed in some specific

patent offices (see section 4.2 and Appendix B for details).

Although each French firm has a unique identifying number (Siren) across all French databases,

patent offices do not identify firms applying for patents using this number but instead using the

firm’s name. This name may sometime carry inconsistencies from one patent to another and/or

can contain typos. Various algorithms have been developed to harmonize assignees’ names (for

example this is the case of the OECD Harmonized Assignee Name database, see Morrison et al.,

2017 for a review) but none of those have been applied specifically to French firms. One notable

exception is the rigorous matching algorithm developed in Lequien et al. (in progress) to link each

patent application with the corresponding French firms’ Siren numbers, for all firms with more than

10 employees. This new method, based on supervised learning and described in Appendix B.4,

provides significant performance improvements relative to previous methods used in the empirical

patent literature: Its recall rate (share of all the true matchings that are accurate) is 86.1% and

its precision rate (share of the identified matches that are accurate) is 97.0%. This is the matching

procedure we use for our empirical analysis in this paper.

Finally, we use CEPII’s BACI database of bilateral trade flows at the HS6 product level (covering

more than 5,000 manufacturing products, see Gaulier and Zignago, 2010) to construct measures

of demand shocks across export destinations over 1995-2012.

Sample restrictions

Although our main firm-level administrative data source is comprehensive, with more than 47.1

million observations spanning over 7.3 million different firms from 1995 to 2012, we restrict our

data sample for several reasons. The first is due to the matching with patent data mentioned above,

which is most complete for firms above 10 employees. We therefore impose this size restriction,

which drops a large number of firms but a relatively small share of aggregate French production:
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17.1% of employment, 15.6% of sales, and 13.6% of exports (predominantly within EU exports).

Second, we restrict our attention to private business corporations (legal category 5 in the Insee

classification). We thus drop state-owned firms, self-employed businesses, and non-profit organiza-

tions as we focus on profit-maximizing firms. This further reduces our sample from 1.7 million to

835,000 firms. Yet, the bulk of aggregate employment (74.2%), sales (77.7%), and exports (77.2%)

remain in our dataset after imposing these restrictions. These remaining firms are matched with

an average of 27,640 patents per year in PATSTAT. Lastly, since our detailed customs trade data

only covers goods trade (and not services), we will further restrict our sample to the manufacturing

sector for most of our analysis.11 This reduces our working sample to 105,000 firms. Nevertheless

the bulk of French aggregate exports and innovation are still concentrated in manufacturing as

only 20.6% of aggregate exports and 33% of patents are recorded outside of this sector.

Our dataset does not allow us to properly take into account the case of multinational groups,

an issue which often arises when dealing with national firm level data. Multinational groups tend

to break the relationship between export shocks and patenting since these groups may locate their

R&D activities in different countries from the location of production. In particular, the R&D

activity for production based in France may be located elsewhere under a different entity of a

multinational’s group. In this case, we will not record the appropriate link between the export

shocks for this producer and an induced innovation (patents). This measurement issue works

against our obtained results of a positive response of patenting to export shocks that is increasing

with a firm’s proximity to its industry frontier. Thus, we conjecture that our results would be

strengthened if we had the needed information to exclude broken production/R&D links amongst

the multinational groups in our sample.

3.2 Sector breakdown and skewness

Table 1 shows the breakdown of those firms across sectors, along with their average employment,

exports, and patents (per firm) for 2007.12 As has been widely reported in the empirical literature

on micro-level trade patterns, many firms are only occasional exporters: they export in some

years, but not in others. This pattern is even more pronounced for innovation: even firms with

substantial ongoing R&D operations do not typically file patent applications year in and year

out. We therefore use the broadest possible cross-year definition to classify firms as exporters and

innovators. We label a firm as an exporter if it has exported at least once between 1993-2012;

11Although the customs data also covers the wholesale sector, we also exclude those firms as they do not produce
the goods that they export.

12Throughout, we define sectors at the 2-digit level of the European NACE rev2 classification. We also eliminate
the tobacco sector (# 12) as it only contains two firms.
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and as an innovator if it has filed at least one patent application between 1995-2012.13 Thus,

our reported export participation rates in Table 1 are higher than in other studies. However,

even with this broadest classification, innovators represent only a small minority of manufacturing

firms. For comparison, Table 1 also reports the share of exporters and innovators based on the

more standard definition of current year (2007 for this table) exporting or patenting activity –

shown in parentheses.

Table 1: Exports and innovation in the manufacturing sector

Sector Description Firms Emp Export % Exporter Patents % Innov.

10 Food products 8,814 43 1,847 41 (26) 20 3 (0)
11 Beverages 1,463 47 5,974 80 (59) 11 2 (0)
13 Textiles 1,802 37 2,335 86 (63) 91 12 (2)
14 Wearing apparel 1,558 39 2,577 80 (59) 49 5 (1)
15 Leather 492 56 2,566 85 (59) 38 9 (2)
16 Wood 2,432 29 790 64 (36) 16 5 (1)
17 Paper 2,950 44 2,056 79 (44) 86 7 (1)
18 Printing 842 24 167 53 (20) 5 3 (0)
19 Coke 171 225 75,957 92 (69) 3,061 24 (9)
20 Chemicals 1,229 116 17,607 94 (79) 1,992 21 (6)
21 Basic pharmaceutical 357 288 42,065 96 (82) 2,808 35 (13)
22 Rubber and plastic 2,745 80 3,820 86 (64) 339 21 (6)
23 Other non-metallic 2,158 63 2,320 65 (38) 272 11 (2)
24 Basic metals 1,648 80 12,487 66 (44) 147 12 (3)
25 Fabricated metal 8,392 36 1,125 67 (40) 82 9 (2)
26 Computer and electronic 3,511 85 7,620 73 (54) 769 23 (8)
27 Electrical equipment 447 106 8,812 91 (70) 1,764 26 (8)
28 Machinery and equipment 4,668 80 8,252 79 (58) 558 24 (7)
29 Motor vehicles 791 61 2,549 79 (47) 173 15 (3)
30 Other transport equipment 558 215 54,911 83 (56) 2,293 18 (7)
31 Furniture 1,146 34 598 67 (36) 14 7 (1)
32 Other manufacturing 1,017 41 2,472 82 (58) 321 12 (3)
33 Repair of machinery 3,430 28 302 54 (23) 25 6 (1)

Aggregate manufacturing 52,621 57 4,654 68 (44) 288 11 (3)

Notes: This table presents the number of firms, average employment, average export (in thousands of Euros), average number of patents

(in thousands), and the shares of exporters and innovators (cross-year definitions). The shares in parentheses are calculated based on

current year export participation or patent filing. Data are for 2007.

Even within the minority set of innovators, patenting activity is extremely skewed. This is

13The initial year for both ranges do not coincide in order to reflect our subsequent empirical analyses. We will
use prior years of export data to construct exogenous export share weights (see section 4.1 for more details).
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Figure 6: Lorenz curves - patents are more concentrated than exports, sales and employment

(a) Top 5 percentiles (b) Whole distribution

Notes: Lorenz curves plot cumulative distribution function for patents, triadic patents, employment, export and sales. Data are for
manufacturing firms.

clearly visible in Figure 6, which plots the Lorenz curve for patents and triadic patent families at

manufacturing firms in 2007, along with the Lorenz curves for exports, sales, and employment.

Figure 6 confirms the previously reported finding that firm-level exports are significantly more

skewed than sales and employment (e.g. see Mayer and Ottaviano, 2008 and Bernard et al.,

2016): 1% of firms account for 67% of aggregate exports in 2007, whereas the top 1% of firms

based on total size account for 50% of sales (ranked by sales) and 31% of employment (ranked

by employment). But Figure 6 also shows that patenting is even significantly more skewed than

exporting: 1% of all firms account for 91% of patents in 2007. And less than 1% of firms own

all the triadic families - i.e. patent families which include patents filed in Asia, Europe and in

the USA, see Section 4.2). Indeed fewer than 2.9% of manufacturing firms have patented in 2007.

This fraction is significantly smaller than our previously reported 11% share of innovators in Table

1 measured across our full sample years. Similarly, only 44% of manufacturing firms report any

exporting activity for 2007 compared to a 68% share when exporting is measured across our full

sample years.

These univariate statistics for patenting and exporting do not capture the massive overlap

between these two activities across firms – which we investigate in more detail below.
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3.3 The innovation-export nexus

Looking across our sample years (1995-2012), Table 2 reports different size-related performance

measures (averages per firm) based on their exporter and innovator classification. This table con-

firms the well-documented size differential in favor of exporters. However, several new salient

features regarding innovators pop-out from this table: 1) Innovating firms are massively concen-

trated among exporters: only 5% of innovators do not report any exporting; 2) non-exporting

innovators do not look very different than non-exporting non-innovators, and the various measures

of firm size (employment, sales, value-added) respectively for innovators and non-innovators among

non-exporters remain close to each other;14 3) these same measures of firm size differ markedly

between innovators and non-innovators among exporters: innovators employ on average 4.5 times

more workers and produce 7-8 times more output and value-added than non-innovating exporters.

They export almost 10 times more than non-innovators and reach more than three times the num-

ber of export destinations. These size differentials are several times larger than those between

exporters and non-exporters. In the aggregate, this small subset of innovators accounts for over

half of French manufacturing exports.

Table 2: Exporters and innovators are bigger

Non-exporter Exporter Total

Non-innovator Innovator Non-innovator Innovator

Firms 45,789 392 52,043 6,893 105,117
Employment 17 20 51 233 59
Sales 2,147 2,460 11,499 69,200 13,982
Value Added 639 883 2,733 16,091 3,332
Age 14 15 20 22 18
Export 0 0 2,463 22,875 3,622
Countries 0 0 5 18 5
Patents 0 0.2 0 2.6 0.2

Notes: This table presents basic descriptive statistics across four categories of manufacturing firms whether they

innovate, export, both or none. Employment is given in full-time equivalent on average over the year and exports,

sales and value added are in thousand of euros. Countries is the number of destination countries for exports.

Employment, Sales, Value Added, Age, Exports, Countries and Patents are taken as a yearly average over the

whole period 1995-2012.

In order to compare exporters to non-exporters and innovators to non-innovators, within specific

14This is not the case outside of the manufacturing sector. In those other sectors, non-exporting innovators are
substantially bigger than their non-exporting and non-innovating counterparts. We conjecture that this is driven
by the fact that exporting no longer serves the same performance screening function outside of manufacturing.
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groups, we compute export and innovation premia. Consider first the exporter premia reported

in the top panel of Table 3. These premia are generated by regressing the performance measure

of interest (listed in the rows) on our exporter indicator – with each cell representing a separate

regression. Column 1 includes no other controls; Column 2 adds a 2-digit sector fixed effect (see

Table 1); and Column 3 controls for firm employment, in addition to the sector fixed effect. Since

we are using a broad cross-year definition for exporter status, we expect these premia to be lower

than measures based on current-year exporter status since firms who drop in and out of export

markets tend to be substantially smaller than year in year out exporters. This is the case for

the premia in column 1 compared to similar numbers reported by Bernard et al. (2016) for U.S.

firms in 2007. Yet, once we control for sectors in column 2, the reported premia become much

more similar. In particular, we find that even within sectors, exporters are substantially larger

than non-exporters. And we also find that large differences in productivity and wages in favor of

exporters persist after controlling for firm employment (within sectors).
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Table 3: Export and innovation premia

Panel 1: Premium for being an exporter (among all manufacturing firms)

(1) (2) (3) Obs. Firms

log Employment 0.854 0.767 937,050 91,563

log Sales 1.616 1.478 0.417 979,413 104,368

log Wage 0.132 0.097 0.109 935,489 91,525

log Value Added Per Worker 0.217 0.171 0.175 923,535 90,876

Panel 2: Premium for being an innovator (among all exporting manufacturing firms)
(1) (2) (3) Obs. Firms

log Employment 1.043 0.997 645,522 58,121

log Sales 1.284 1.239 0.197 656,218 58,803

log Wage 0.125 0.095 0.109 644,533 58,104

log Value Added Per Worker 0.203 0.173 0.179 635,144 57,720

log Export Sales (Current period exporters) 2.018 1.911 0.806 433,456 56,509

Number of destination countries 13 11 7 663,004 58,936

Notes: This table presents results from an OLS regression of firm characteristics (rows) on a dummy variable for exporting

(upper table) or patenting (lower table) from 1994 to 2012. Column 1 uses no additional covariate, column 2 adds a 3-digit sector

fixed effect, column 3 adds a control for the log of employment to column 2. All firm characteristic variables are taken in logs. All

results are significant at the 1 percent level. Upper table uses all manufacturing firms whereas lower table focuses on exporting

manufacturing firms.

In the bottom panel, we focus on the subset of exporters from the top panel, and report

the additional premia in favor of innovators within this subset. As with the top panel, those

premia are calculated by running separate regressions on our innovator indicator. Even within this

subset of bigger and better performing firms, innovators stand out: they are substantially bigger,

more productive, and have larger total wage bill. They also export substantially more (and to

more destinations) than non-innovative exporters. All these differences persist within sectors and

controlling for firm employment.

Even these large premia do not fully reflect the concentration of innovative and exporting

activities within the more restricted subset of firms that are both exporters and innovators. Figure

1 plots the share of innovating firms for each percentile of the firm export distribution. We see that

the innovative firms are highly concentrated within the top percentiles of the export distribution.

At the 80th percentile of the export distribution, 30% of the firms have some patenting experience.

And the increase in the share of innovative firms with the percentile of the export distribution
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is highly convex. Above the 95th percentile of the export distribution, a majority of firms are

innovators; in the top percentile, 68% of the firms are innovators. Those firms in the top export

percentile account for 41% of the aggregate share of French patents.

4 Empirical framework and results

4.1 Identification strategy: firm-level export demand shocks

We have just documented the strong correlation between exports and innovation in the cross-

section of French manufacturing firms. However, this correlation does not shed light on the di-

rection of causation: from innovation to exports (a major innovation leads to growth in export

demand and entry into new export markets), or from exports to innovation (as we emphasize in

our theoretical comparative statics). Moreover, other firm-level changes could generate concurrent

changes in both innovation and exports (for example, a new management team). Thus, to identify

the causal relationship from exports to innovation, we need to identify a source of variation in firm

exports that is exogenous to changes within the firm (and in particular to the innovation activity of

the firm). We follow Mayer et al. (2016) in building such a measure of exogenous export demand.

To construct these export demand shocks, consider a French exporter f who exports a product

s to destination j at an initial date t0. Let Mjst denote the aggregate import flow in product s into

country j from all countries except France at time t > t0. Mjst reflects the size of the (s, j) export

market at time t. We then sum Mjst across destinations j and products s weighted by the relative

importance of market (s, j) in firm f ’s exports at the initial date t0. The underlying idea is that

subsequent changes in destination j’s imports of product s from the world (excluding France) will

be a good proxy for the change in export demand faced by this firm. By excluding French exports

to this destination, we seek to exclude sources of variation that originate in France and may be

correlated with changes for the firm.15 We then scale the weighted export demand variable by the

firm’s initial export intensity (at t0) so that our demand shock scales proportionately with a firm’s

total production. (As a firm’s export intensity goes to zero, so does the impact on any export

shock on total production.)

More precisely, let Xfjst0 denote firm f ’s export flow to market (j, s) at time t0. This is the

firm’s first observed export year in our sample.16 The export demand shock for firm f at time t is

15Another distinct potential source of endogeneity may arise in markets where a French firm has a dominant
position. In this case, imports into those markets may respond to this firm’s decisions (including innovation). We
address this issue in Section 4.5.3.

16We consider this firm to be an exporter only if we observe positive exports in both customs data (so we can
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then:

DMs
ft =

X∗ft0
S∗ft0

∑
j,s

Xfjst0

Xft0

logMjst, (5)

where the weight (X∗ft0/S
∗
ft0

)(Xfjst0/Xft0) represents firm f ’s initial share of sales of product s to

destination j and Xft0 =
∑
j,s

Xfjst0 represents the firm’s total exports. The asterisks on firm f ’s

initial export intensity X∗ft0/S
∗
ft0

indicate that the underlying data for total exports X∗ft0 and sales

S∗ft0come from the production data (as opposed to customs data which we use to calculate the

destination/product specific market shares).17

We note that the time variation in our demand shock DMs
ft only stems from the world export

flow Mjst and not the firm-level weights, which are fixed in the initial export period t0. We expect

that a firm’s innovation response at time t > t0 will induce changes to its pattern of exports at

time t and beyond, including both intensive margin responses (changes in exports for a previously

exported product s to a destination j) and extensive margin responses (changes in the set of

products s sold across destinations j). By fixing the firm-level weights in the initial period t0

(including the extensive margin set of products and destinations), we exclude this subsequent

endogenous variation from our demand shock.

We will also experiment with an alternate measure of this demand shock using more aggregated

data (across products). We thus aggregate both the world and the firm’s export shares at the 3-

digit ISIC level:

DMI
ft =

X∗ft0
S∗ft0

∑
j,I

XfjIt0

Xft0

logMjIt,

where MjIt =
∑
s∈I

Mjst measures aggregate imports (excluding France) in destination j for industry

I, and XfjIt0 =
∑
s∈I

Xfjst0 is the associated firm-level exports for that industry-destination pair

in the initial year t0. This measure will no longer reflect the cross-firm variation at the detailed

product level. However, it captures some potential spillovers across related products in the con-

struction of the demand shock (an increase in export demand for closely related products may

induce a firm to direct innovation towards these related products).

Constructing these export demand shocks generates outliers for a few firms that export a

small set of products (often highly specialized) to small destinations (such as yachts to Seychelles

and Maldives). We therefore trim our sample by removing firms with extreme changes in our con-

calculate destination market shares) as well as production data (so we can calculate export intensity).
17Total exports reported by customs and in the production data do not always exactly match, though they

are highly correlated. One potential source of difference comes from small exports towards other European Union
countries which are not reported in custom data (see Appendix B for more details).
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structed export demand. We regress this demand shock on a firm fixed effect and trim observations

with a residual that is above/below the 97.5th/2.5th percentile. That is, observations with the

largest variations in their export demand shock (relative to their firm mean) are eliminated from

our sample.18

Before turning to the impact of the export demand shock on the firms’ innovation response,

we note that this demand shock has a very significant explanatory power for a firm’s total export

response (see Table B1, which uses a similar estimating strategy as the one we develop in the next

section for innovation).

4.2 Innovation measures

We consider three main measures of innovation for each French firm f in any year t. The first

measure counts all patent applications filed by the firm during year t. To better reflect the firm’s

individual contribution, we use fractional counts for patents shared with other firms (so that a

patent filed with 2 other applicants counts as a third). The second measure selects higher quality

innovations by counting triadic families of patents: when the same innovation (within a patent

family) is filed at three different patent offices in Europe (the European Patent Office, EPO), the

United States (U.S. Patent Office, USPTO) and at least one of the major Asian economies (Japan,

China or Korea).19 The rationale behind this measure is that the best ideas are more likely to be

protected in the three main economic regions worldwide. Another feature of this triadic patent

measure is that it is more immune to geographical and institutional biases, i.e. to the possibility

that different patent offices would differ with regard to quality standards and/or the enforcement

of Intellectual Property Rights (see Park, 2008). When aggregating triadic patent families by firm,

we also use fractional counts to reflect a given firm’s contribution to the patent family. The third

measure counts (fractional) patent applications in Europe (at the EPO) – the main domestic market

for French firms. This measure is thus less restrictive than the triadic measure (which requires

filing in 3 regions including Europe); but it provides a homogeneous institutional framework for

the assessment of intellectual property. Other innovation measures yield similar results (see section

4.5.1). Appendix B provides additional details on the construction of our patent measures.

18The incidence of these outliers decreases as we aggregate the trade flows from products to industries. We have
experimented with different threshold cutoffs in the 1-5% range. Our qualitative results are robust to these changes
(see Table B3 in Appendix C).

19This definition is slightly broader than the definition of triadic patent families used elsewhere in the literature
as we consider China and Korea in addition to Japan.
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4.3 Main estimation strategy

Our baseline regression seeks to capture the impact of the exogenous demand shock on a firm’s

innovation response. We expect this innovation response to incorporate the cumulated effects of

the trade shocks over time. We thus do not use year-to-year differences in the demand shock (first

differences) and use that shock as constructed (in “levels”) along with a firm fixed-effect in order

to capture its within-firm variation (relative to the firm mean over time). We also add sector-time

fixed-effects to remove any time variation that is common to the firm’s sector. We restrict our

analysis to the subset of innovating firms (i.e. firms with at least one patent since 1994).20

To capture the indirect competition effect of an export demand shock (which varies with a

firm’s initial productivity level), we add an interaction between the demand shock and the firm’s

initial productivity. Just as we did with the firm-level export shares, we only use our initial year t0

to generate a productivity measure that does not subsequently vary over time t > t0.21 We assign

a 0-9 productivity index df to all firms based on their labor productivity (value-added per worker)

decile in year t0 within their 2-digit sector.22

The left-hand panel of Figure 7 shows a bin-scatter of our main patent measure (all applications

in year t) against the firm’s export demand DMs
ft for the same year – absorbing a firm fixed-effect.

This clearly shows that there is a very strong correlation between changes in export demand and

changes in patent flows (within firms over time); and that a linear relationship provides a very

good functional form fit for that correlation. We thus use a linear OLS specification as our baseline

regression equation to quantitatively assess this relationship:

Yft = α Dft + β Dft ∗ df + χs,t + χf + εft, (6)

where Yft is one of our innovation measures based on the flow of patent applications during year

t by firm f and Dft is one of our export demand proxies (DMs
ft or DMI

ft ) for that same year t.

Those proxies are constructed so that they are exogenous to the firm’s decision in year t > t0.23

20Investigating the entry margin into - or the exit margin out of - the set of innovating firms is also an important
topic, but we leave it for further research.

21Recall that t0 is the first year since 1994 in which the firm reports positive exports. This year is equal to 1994
for about 50% of the firms and is always removed from the estimation.

22When a firm belongs to the manufacturing sector for a subset of our sample years, we only use those years in
our estimation. For a firm not in our manufacturing sample at t0, we compute its productivity decile within its
previous sector at t0.

23Serial correlation in the innovation shocks could induce some correlation between a firm’s export structure a
time t0 (which we use to construct our export demand shock for year t) and the subsequent innovation shock in year
t. First, we note that a time-persistent effect in the innovation shock will be captured by the firm fixed-effect. To
ensure that our results are not driven by transitory serial correlation, we also experiment with dropping additional
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The χs,t and χf capture the sector-time and firm fixed effects and εft is an error term. In most of

our regressions, we estimate coefficients and standard errors using a Newey-West estimator for the

covariance matrix which allow for heteroskedasticity and autocorrelation in the error terms with

a maximum lag of 5 years (see Newey and West, 1987 and Wooldridge, 2010).24

While the linear panel fixed effect model is our preferred specification, we also show results

from a Poisson model in Table B6 using the following specification:

ln
(

E
[
Ỹft

])
= a Dft + b Dft ∗ df + χs,t + χf , (7)

where Ỹft is a measure of total patent applications that does not use fractional counts and is

therefore an integer. We estimate a and b and corresponding standard errors using maximum

likelihood.

4.4 Baseline results

In the model, an increase in market size induces both a positive market size effect and a

counteracting competition effect which is most pronounced (and potentially dominant) for the

least productive firms (Section 2.6). In the data this feature clearly stands out. Graphically the

right-hand side panel in Figure 7 shows that the number of patents increases much more with export

demand in firms initially more productive (above the median productivity). Quantitatively Table 4

reports the results from the baseline regression (6). A positive export shock reduces innovation for

firms in the lowest productivity decile (df = 0); the export shock’s impact on patenting increases

with initial productivity and turns positive at productivity around the third or fourth decile: firms

initially more efficient increase more their innovation when they face a positive export shock. This

pattern holds for all three patent and two demand shock measures.

Our coefficients from column 1 using the product-level demand shock imply the following

quantitative response in the number of patents to the average demand shock: for a firm in the

lowest productivity decile, the number of patents (relative to the firm average) is 3.3 patents lower

than the sector average; and each additional productivity decile increases this patent response

by 0.96 patent. Thus the response of a firm in the top productivity decile amounts to 8.7 more

years of data following t0. Instead of starting our sample at t0 + 1, we have tried starting at t0 + 2 or t0 + 3. We
report those alternative specifications in Table B4, which are qualitatively very similar to our baseline results (even
though the sample size is reduced in our critical time dimension).

24We also show robustness of our baseline results using standard errors clustered by firm (see Table B5). However,
given the relatively long time dimension of our sample, we find this latter specification too conservative and prefer
the Newey-West estimator. As argued by Abadie et al. (2017), in such fixed-effect models, clustering standard error
only matters if we expect heterogeneity in the treatment effect.
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Figure 7: Patenting increases more with demand for initially more efficient firms
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Notes: Each dot represents the quantile-average of the residual of the number of patent on a firm fixed effect (y-axis) against the

quantile-average of the residual of the demand variable DMs
ft on a firm fixed effect (x-axis), for all firms (left-hand side panel) or for

both firms below (blue) or above (red) the productivity median at t0 (right-hand side panel).

patents than the sector average (still relative to the firm average). Our coefficients when using the

industry demand shocks (column 2) yield very similar results.

4.5 Robustness analysis

Our main finding – that initially more productive firms respond to an export demand shock by

innovating relatively more – is robust to various alternative specifications. In this subsection, we

show the robustness of our main results to: (i) considering other patent indicators; (ii) controlling

for firm specific characteristics; (iii) excluding dominant firms in a destination market; (iv) con-

sidering alternative measures and heterogeneous effects for a firm’s proximity to frontier; and (v)

controlling for pre-trends with sector-decile specific time trends.

4.5.1 Other patent indicators

There are many alternative ways of aggregating patent counts, which yield different measure-

ments of a firm’s innovation output. In Table 5 we consider 6 alternative measures of Yft and
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Table 4: Baseline results

Dependent variable All patents Triadic patents EPO patents

Demand measure DMs
ft DMI

ft DMs
ft DMI

ft DMs
ft DMI

ft

(1) (2) (3) (4) (5) (6)

Demand -3.260*** -2.578** -0.265*** -0.224*** -0.368*** -0.447***
(1.014) (1.056) (0.0786) (0.0820) (0.123) (0.143)

Decile × Demand 0.960*** 0.909*** 0.0859*** 0.0862*** 0.125*** 0.114***
(0.255) (0.304) (0.0195) (0.024) (0.029) (0.039)

Cutoff decile 4 3 4 3 3 4

Nb of observation 77,901 77,918 77,901 77,918 77,901 77,918
R2 0.897 0.888 0.759 0.747 0.849 0.836

Notes: This table presents regression results of an OLS estimation of equation 6. Sample includes manufacturing firms with at
least one patent in 1995-2012 and for which we can compute the export demand shock (see section 4.1). Cutoff decile corresponds
to the first value of df for which the overall effect becomes positive. Coefficients and standard errors are obtained using a panel
fixed-effect estimator. Autocorrelation and heteroskedasticity robust standard errors using the Newey-West variance estimator
with a bandwidth set to 5 years. ***, ** and * respectively indicate 0.01, 0.05 and 0.1 levels of significance.

run our baseline model (6) with these new dependent variables. (1) We first restrict our triadic

measure to a dyadic one by only considering the number of patent families at the USPTO and

at the EPO (dropping Asia); (2) We then expand the definition by counting all patent families

(instead of individual patents as in our baseline); (3) We return to a count of individual patents

but restrict this to EPO patent applications; (4) We count only the number of priority patent

applications; (5) We drop the construction of fractional patent counts (“raw” number of patent);

and (6) We only count the number of patent applications that will ultimately be granted in any

patent office.25 The results for all these alternative patent measures are similar to those in our

baseline Table 4: the export demand shock has a positive effect on the corresponding measure of

innovation in frontier firms but has a negative effect on innovation in lagging firms.

4.5.2 Direct control for firm size

A firm experiencing an increase (decrease) in market size which is not initially related to

innovation, may still respond to it by innovating and exporting more (less). We do not control

for firm size directly in our baseline as our theoretical model suggests that changes in size that

are driven by the export shocks should be incorporated into our measure of the impact of exports

on innovation. However, in order to eliminate a direct impact of firm scale on our estimates, we

25See Appendix B for additional details on the construction of all these indicators.
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Table 5: Alternative ways of counting patents

Dependent variable Dyadic Families EPO* Prior Nb Appln Granted

Demand Measure DMs
ft DMs

ft DMs
ft DMs

ft DMs
ft DMs

ft

(1) (2) (3) (4) (5) (6)

Demand -0.233** -0.936*** -0.883*** -1.364*** -4.732*** -1.197*
(0.098) (0.330) (0.222) (0.502) (1.253) (0.629)

Decile × Demand 0.072*** 0.271*** 0.245*** 0.408*** 1.375*** 0.363**
(0.024) (0.087) (0.050) (0.133) (0.315) (0.154)

Nb of observation 77,901 77,901 77,901 77,901 77,901 77,901
R2 0.819 0.802 0.848 0.830 0.881 0.900

Notes: This table presents regression results of an OLS estimation of equation 6. Sample includes manufacturing firms with
at least one patent in 1995-2012 and for which we can compute the export demand shock (see section 4.1). See Appendix
B for a complete definition of the different indicators used in this Table. Coefficients and standard errors are obtained using
a panel fixed-effect estimator. Autocorrelation and heteroskedasticity robust standard errors using the Newey-West variance
estimator with a bandwidth set to 5 years. ***, ** and * respectively indicate 0.01, 0.05 and 0.1 levels of significance.

now include such a control for firm size (at time t). We select different empirical measures of size

from the production data: employment, raw materials, net and gross capital stock, and sales. The

corresponding regression results are reported in Table 6. They clearly show that a direct control

for size does not affect our previously reported baseline coefficients (reported again in column 1):

the coefficients remain virtually unchanged. Similar results are obtained when using our two other

main measures of innovation (triadic and EPO families) and are available upon request.

4.5.3 Excluding markets where a firm is a leader

When a French firm has a dominant market share in a market (j, s), then the world exports

Mjst may be correlated with the firm’s exports Xfjst (even though French exports are excluded

from the construction of the world exports Mjst) as those other Foreign exporters may respond to

actions taken by this French firm. To investigate this further, we drop from our dataset the markets

(j, s) (in all years) for a firm f whenever its export sales in market (j, s) are above 10% of world

exports (including France) into this market for any given year. These instances represent 6.7% of

the customs data observations and predominantly reflect firms exporting to African destinations.

The results are reported in Table B7 in the Online Appendix; and once again leave our baseline

results virtually unchanged.
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Table 6: Control for firm size

Dependent variable Number of patents

Demand measure DMs
ft DMs

ft DMs
ft DMs

ft DMs
ft DMs

ft

(1) (2) (3) (4) (5) (6)

Demand -3.260*** -3.434*** -3.285*** -3.218*** -2.799*** -3.280***
(1.014) (1.039) (1.024) (1.017) (1.004) (1.012)

Decile × Demand 0.960*** 0.970*** 0.954*** 0.960*** 0.874*** 0.976***
(0.255) (0.263) (0.257) (0.256) (0.258) (0.255)

Size 0.696*** 1.257*** 2.007*** 2.007*** 1.227***
(0.114) (0.096) (0.201) (0.350) (0.187)

Nb of observation 77,901 76,236 76,678 76,860 77,240 77,605
R2 0.897 0.900 0.898 0.898 0.898 0.898

Notes: This table presents regression results of an OLS estimation of equation 6 where we add a control for firm size. Column
1 uses no control, column 2 controls for the log of raw material inputs, column 3 (resp. 4) controls for the log of net (resp.
gross) capital stock, column 5 controls for the log of employment and column 6 controls for the log of sales (we obtain similar
results when we control jointly by any subset of these covariates). Sample includes manufacturing firms with at least one patent
in 1995-2012 and for which we can compute the export demand shock (see section 4.1). Coefficients and standard errors are
obtained using a panel fixed-effect estimator. Autocorrelation and heteroskedasticity robust standard errors using the Newey-
West variance estimator with a bandwidth set to 5 years. ***, ** and * respectively indicate 0.01, 0.05 and 0.1 levels of
significance.

4.5.4 Other measures of proximity to frontier

So far, our model uses initial productivity deciles to measure a firm’s proximity to its sector’s

technology frontier. We now consider alternative measures for this proximity. Table 7 shows that

our baseline results (1) are robust to (2) measuring productivity deciles using sales instead of value

added per worker; as well as (3)-(6) measuring proximity to frontier using a binary threshold for

initial productivity within sector set at 50%, 75%, 90% and 95%. Those results highlight how the

impact of the export shock is magnified for firms very close to the frontier (at the very top of the

distribution of initial productivity).26

In light of these results, which suggest that the positive effect of export demand on innovation

may be concentrated among the most productive firms, we allow our key interaction coefficient β

in equation (6) to vary with the productivity decile df . Our estimating equation then becomes:

Yft =
9∑
d=0

[
βd Dft ∗ 1df=d

]
+ χs,t + χf + εft, (8)

26Similar results are obtained when using Triadic and EPO families. Tables are available upon request to the
authors.
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Table 7: Alternative definition of frontier

Dependent variable Number of patents

Demand measure DMs
ft DMs

ft DMs
ft DMs

ft DMs
ft DMs

ft

(1) (2) (3) (4) (5) (6)

Demand -3.260*** -1.316 -1.042** -0.0904 0.520 0.578
(1.014) (0.890) (0.501) (0.680) (0.699) (0.671)

Interaction 0.960*** 0.578** 4.438*** 5.456*** 8.375** 16.63**
(0.255) (0.235) (1.117) (1.835) (3.570) (7.276)

Nb of observation 77,901 77,901 77,901 77,901 77,901 77,901
R2 0.905 0.905 0.905 0.905 0.905 0.906

Notes: This table presents regression results of an OLS estimation of equation 6. Sample includes manufacturing
firms with at least one patent in 1995-2012 and for which we can compute the export demand shock (see section 4.1)
Column (1) is our baseline model, column (2) defines productivity using sales instead of value added, columns (3) to
(6) no longer construct decile groups but use a dummy variable for being above the sectoral 50th, 75th, 90th and 95th

percentile of the initial productivity distribution. This dummy is interacted with the demand variable. Autocorrelation
and heteroskedasticity robust standard errors using the Newey-West variance estimator with a bandwidth set to 5 years.
***, ** and * respectively indicate 0.01, 0.05 and 0.1 levels of significance.

where 1df=d are indicator dummies for each productivity decile. This new specification allows us

to relax the assumption that there is a constant slope shift across decile groups and to account for

potential non linear effects of our export demand shock variable for different levels of productivity.

Coefficients and corresponding confidence intervals are graphically reported in Figure 8. They

show that the assumption of a constant effect across decile group is a good approximation – with

the possible exception of the top-decile where the effect is magnified relative to the linear trend

(this confirms the results from Table 7). This figure also highlights that the effect of the demand

shock is clearly negative for some of the lowest productivity deciles; and that this effect turns

positive for all deciles above the median (deciles 5 through 9). The confidence intervals remain

relatively wide since those decile indicators induce substantial collinearity.

4.5.5 Controlling for sector-decile specific time trends

To deal with the possibility that firms in different productivity deciles and different sectors may

evolve differently over time and in particular may follow different innovation trends independently

from the export demand shock, we add dummies for all year-productivity decile bins. Those

results are reported in the odd-numbered columns (1), (3), (5) in Table 8. In addition, we also

consider dummies for the triple interaction of all year-sector-productivity decile bins. Those results

are reported in the even-numbered columns (2), (4), (6). This sectoral classification is the same
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Figure 8: Response to Demand by decile of productivity

Notes: Regression coefficients are estimated using a panel fixed effect estimator and corresponding 95% confidence intervals are
constructed with Newey-West estimated standard errors of equation (8).

that we use to construct the productivity deciles – which are now orthogonal to any sector-level

changes over time. Table 8 highlights that these controls do not change the message from our

baseline results (though the negative impact for low productivity firms is no longer significant for

the case of EPO patent families).

4.6 Extensions

In this last section, we extend our empirical analysis in different directions. First, we categorize

export destinations based on a separate measure of competition in those destinations and show that

the competition effect is most salient in high competition export destinations. We then show how

we obtain similar results with an alternate specification based on long time-differences (splitting

our sample years into two intervals). This provides an alternate way of capturing the slow-moving

changes in the variables of interest (changes in export demand and the associated innovation

response). And third, we contrast our main results using measures of innovation output (patents)

with results obtained with measures of innovation inputs (R&D inputs) – which are available for

a subsample of firms in our sample.
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Table 8: Decile group specific evolution

Dependent variable All patents Triadic patents EPO patents

Demand measure DMs
ft DMs

ft DMs
ft DMs

ft DMs
ft DMs

ft

(1) (2) (3) (4) (5) (6)

Demand -2.876*** -2.135** -0.179** -0.135** -0.168 -0.0755
(0.975) (0.868) (0.0716) (0.0638) (0.121) (0.120)

Decile × Demand 0.900*** 0.727*** 0.0689*** 0.0515*** 0.0833*** 0.0614**
(0.267) (0.251) (0.0200) (0.0188) (0.0316) (0.0309)

Nb of observations 77,901 77,744 77,901 77,744 77,901 77,744
R2 0.897 0.899 0.759 0.763 0.849 0.849

Notes: This table presents regression results of an OLS estimation of equation 6, to which a productivity decile × year fixed
effect is added (columns 1, 3 and 5) or replacing the sector × time fixed effect with a sector × productivity decile × time
fixed effect (columns 2, 4 and 6). Sample includes manufacturing firms with at least one patent in 1995-2012 and for which
we can compute the export demand shock (see section 4.1). Coefficients and standard errors are obtained using a panel fixed-
effect estimator. Autocorrelation and heteroskedasticity robust standard errors using the Newey-West variance estimator with
a bandwidth set to 5 years. ***, ** and * respectively indicate 0.01, 0.05 and 0.1 levels of significance.

4.6.1 Direct competition effect

We now highlight how the skewed response of innovation to the export shock is driven by

the induced competition effect (a demand-side explanation) – as opposed to supply-side effects

(such as skewness in the costs or returns to R&D). Towards this end, we use an index of market

competition from Djankov et al. (2002) to separate all French export market destinations into

high- and low- competition categories. These data on competition levels across countries are now

regularly updated and reported in the World Bank’s “Doing Business” database. There are several

different measures for competition; we use the index reflecting the ease of opening up a business

in a country. This generates a time-invariant index by destination on a 0-100 scale.27

We then separate destinations into high (H, above median) and low (L, below median) compe-

tition according to this index and construct two separate export demand shock measures for those

two categories:

DMs
ft,H =

X∗ft0
S∗ft0

∑
j,s

1Cj>Ĉt

Xfjst0

Xft0

logMjst,

and

DMs
ft,L =

X∗ft0
S∗ft0

∑
j,s

1Cj≤Ĉ,t
Xfjst0

Xft0

logMjst,

27See Appendix B for more details about these data and for an explanation on why we can only construct a
time-invariant measure of competition by country.
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where Cj denotes the country-specific competition index (ease of doing business) and Ĉt is the

median of this value in year t. Hence 1Cj≤Ĉt
is equal to 1 if country j is less competitive than the

median country. These two new demand shocks sum up to our baseline measure DMs
ft and capture

separate export demand proxies for destinations with high/low competition.

We then estimate the following model:

Yft = αH DMs
ft,H + βH DMs

ft,H ∗ df + αL D
Ms
ft,L + βL D

Ms
ft,L ∗ df + χs,t + χf + εft. (9)

Our theory predicts that we should observe the skewness impact of the demand shocks more (or

entirely) for the high-competition destinations. The results reported in Table 9 strongly confirm

this prediction. This table considers two separate ways of measuring the threshold value Ĉ. In the

odd-numbered columns (1), (3), (5), Ĉ is the yearly median value once the measure of competition

has been aggregated by product (i.e. on a sample containing one observation per product/firm).

In the even-numbered columns (2), (4), (6), we use the threshold value when we keep only one

observation per country. Both threshold measures for high/low competition confirm that the

skewness effect is predominantly driven by the impact of export demand in high competition

destinations.

4.6.2 Regression in long differences

In this section, we explore an alternate estimation strategy based on long differences over time.

We decompose our full 1995-2012 sample into two periods p ∈ {p0, p1} of equal length. Our demand

variable is then measured in log differences, at the product (6 digit HS) or industry (3 digit ISIC)

level, as:

∆DMs
f =

X∗fp0
S∗fp0

∑
j,s

Xfjsp0

Xfp0

log
Mjsp1

Mjsp0

,

∆DMI
f =

X∗fp0
S∗fp0

∑
j,I

XfjIp0

Xfp0

log
MjIp1

MjIp0

,

where all trade flows are aggregated over each period p0 and p1.28 Similarly, we measure innovation

output ∆Yf as the difference in patent introductions between both periods (same measures as for

our baseline analysis).

28 Xfjsp0
=
∑

t∈p0
Xfjst, and Xfp0

=
∑

j,sXfjsp0
. X∗fp0

and S∗fp0
are the average over period p0 of yearly

(Ficus) exports and sales. Mjsp is the average over period p of Mjst. If Mjsp = 0, we replace it with 1 euro. The
construction is similar at the industry level. Finally, dfp0 is the decile of the average (within sector) productivity
decile over period p0. A firm’s sector is its most representative one during period p0.
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Table 9: More direct estimation of the competition effect

Dependent variable All patents Triadic patents EPO patents

Demand Measure DMs
ft,H , DMs

ft,L DMs
ft,H , DMs

ft,L DMs
ft,H , DMs

ft,L

(1) (2) (3) (4) (5) (6)

Low Competition -0.030 -0.113 -0.026 -0.041 -0.147 -0.140
(0.457) (0.465) (0.031) (0.032) (0.092) (0.092)

High Competition -5.686*** -5.275*** -0.373** -0.387** -0.691*** -0.902***
(1.980) (1.769) (0.153) (0.151) (0.222) (0.221)

Interact. Low 0.086 0.008 0.012 0.013** 0.024 0.001
(0.144) (0.086) (0.009) (0.006) (0.029) (0.014)

Interact. High 2.134*** 1.338** 0.182*** 0.103** 0.306*** 0.179***
(0.652) (0.522) (0.052) (0.043) (0.084) (0.059)

Nb of observation 76,821 76,821 76,821 76,821 76,821 76,821
R2 0.892 0.896 0.836 0.756 0.861 0.843

Notes: This table presents regression results of an OLS estimation of equation (9). Demand (low comp.) corresponds to

DMs
ft,B as defined in section 4.6.1 and Demand (high comp.) to DMs

ft,A. Interaction low comp. (resp high comp.) is defined

as the interaction between the productivity decile of the firms and DMs
ft,B (resp DMs

ft,A). Columns 1, 3 and 5 define the

competition median at the firm × product level each year to compute demand shocks while columns 2, 4 and 6 compute the
median at the country level (see section 4.6.1). Sample includes manufacturing firms with at least one patent in 1995-2012
and for which we can compute the export demand shock (see section 4.1). Coefficients and standard errors are obtained using
a panel fixed-effect estimator. Autocorrelation and heteroskedasticity robust standard errors using the Newey-West variance
estimator with a bandwidth set to 5 years. ***, ** and * respectively indicate 0.01, 0.05 and 0.1 levels of significance.

The firm fixed-effect is differenced-out but we keep the sector fixed effect; and we add the firm’s

productivity decile as an additional (pre-trend) control. Our estimating equation then becomes:

∆Yf = α ∆DMs
f + β ∆DMs

f ∗ dfp0 + γ dfp0 + χs + εf , (10)

The results are reported in Table 10. The impact of the demand shock for the lowest productivity

decile is still negative though barely significant. However, the interaction between the demand

shock and the firm’s initial productivity decile is positive and much more strongly significant.

These results confirm our previous baseline findings.

4.6.3 Measures of innovation inputs: R&D investment

Up to now, we have used measures for the output of innovation based on patents. Another

commonly used measure for innovation is based on R&D investment (the inputs for the innovation
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Table 10: Long Difference regressions

Dependent variable Nb patents Triadic families EPO families

Demand Shock ∆DMs
f ∆DMs

f ∆DMs
f

(1) (2) (3)

Demand -5.382** -0.314* -0.514*
(2.431) (0.191) (0.302)

Decile × demand 1.260** 0.108** 0.140**
(0.562) (0.0461) (0.0612)

Decile -0.0345 -0.00493 0.00832
(0.0554) (0.00356) (0.00661)

Nb of observation 4,707 4,707 4,707
R2 0.0197 0.0171 0.0138

Notes: This table presents regression results of an OLS estimation. Sample includes one
observation per manufacturing firm with at least one patent in 1995-2012 and for which we can
compute the export demand shock (see section 4.1). 1995-2012 is broken down in 2 periods
(1995-2003 and 2004-2012), over which trade flows and firm characteristics are aggregated. ***,
** and * respectively indicate 0.01, 0.05 and 0.1 levels of significance.

process). As with any input-based measure, the latter generates biases against firms that use those

inputs more efficiently to generate innovation. A separate issue is that this measurement of R&D

inputs is only available based on survey responses covering a subsample of firms. The sample

is exhaustive for the largest innovators, but the sampling frequency decreases steeply with firm

size. Thus, smaller firms are not consistently surveyed over time, thwarting the construction of

time-varying measures of innovation (see more details in Appendix B.6).

Table 11 reports the correlations between our three main patent measures and a firm’s to-

tal R&D budget and the associated number of R&D researchers – whenever this survey data is

available. The left-hand side panel reports the between-firm correlations based on firm averages

across years. Although the correlations across innovation inputs (R&D) and outputs (patents)

in the bottom-left rectangle are weaker than the correlations within a set of inputs or outputs,

the between firm correlations are nevertheless substantial and highly significant. However, those

correlations between inputs and outputs drop precipitously when focusing on within-firm varia-

tions – whereas the correlations within the set of either inputs or outputs remain strong. Those

correlations are reported in the middle and right-hand side panels in Table 11. (The middle panel

reports within-firm correlations across all years after absorbing a firm fixed-effect; while the right-

hand side panel reports the within-firm correlation between periods p0 and p1 as defined in our
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Table 11: Correlations between R&D and patent measures of innovation

Between Within Long Difference

1.001.001.001.001.00

0.950.950.950.950.95

0.970.970.970.970.97

0.470.470.470.470.47

0.460.460.460.460.46

1.001.001.001.001.00

0.910.910.910.910.91

0.440.440.440.440.44

0.400.400.400.400.40

1.001.001.001.001.00

0.510.510.510.510.51

0.520.520.520.520.52

1.001.001.001.001.00

0.910.910.910.910.91 1.001.001.001.001.00

Nb patents

Triadic families

EPO families

R&D budget

Nb researchers

Nb patents
Triadic families

EPO families
R&D budget

Nb researchers

1.001.001.001.001.00

0.510.510.510.510.51

0.680.680.680.680.68

0.090.090.090.090.09

0.080.080.080.080.08

1.001.001.001.001.00

0.360.360.360.360.36

0.010.010.010.010.01

0.040.040.040.040.04

1.001.001.001.001.00

0.070.070.070.070.07

-0.02-0.02-0.02-0.02-0.02

1.001.001.001.001.00

0.590.590.590.590.59 1.001.001.001.001.00

Nb patents

Triadic families

EPO families

R&D budget

Nb researchers

Nb patents
Triadic families

EPO families
R&D budget

Nb researchers

1.001.001.001.001.00

0.780.780.780.780.78

0.690.690.690.690.69

0.110.110.110.110.11

0.070.070.070.070.07

1.001.001.001.001.00

0.340.340.340.340.34

0.050.050.050.050.05

0.130.130.130.130.13

1.001.001.001.001.00

0.030.030.030.030.03

-0.08-0.08-0.08-0.08-0.08

1.001.001.001.001.00

0.540.540.540.540.54 1.001.001.001.001.00

D Nb patents

D triadic fam

D EPO fam

D R&D budget

D Nb researchers

D Nb patents
D triadic fam

D EPO fam
D R&D budget

D Nb researchers

Notes: This table presents the pairwise correlations between innovation measures from PATSTAT and from the R&D survey. It is based on
the sample of manufacturing firms with at least one patent in 1995-2012, for which we can compute the export demand shock (see section
4.1). Between correlations are the correlations between the firms’ averages over the period. Absorbing a year or year x sector fixed effect
prior to taking the firms’ average leaves the correlations and their p-values virtually unchanged. Within correlations are the correlations
after taking out the firm fixed effect. The long difference correlations are the correlations between the period 1 innovation measures. Using
Sidak-adjusted p-values, all the correlations are significant at 5%, except the within and LD correlations between triadic families and total
R&D budget and the LD correlation between EPO families and total R&D budget.

previous long-difference regressions.) Those very low correlations could be driven by the fact that

R&D investments within a firm occur at discrete time intervals and slowly translate into increased

patents – along with unmeasured changes in the efficiency/utilization of those R&D inputs.

In Table 12, we report the regression results for both our baseline specification as well as the

long-difference one using both R&D input measures. In order to separate out the impact of the

reduction in sample size associated with the availability of R&D data, we report results using our

main patent innovation output variable with the same subsample of firm-years. In the left-hand

columns reporting the level regressions, we see that the reduction in sample size does not affect

our main results for the skewness impact of the export demand shock on the patent response. The

coefficients using the R&D inputs have the same signs, but are not significant. We conjecture

that this is due to the fact that the patent measure better captures the within-firm changes in

innovation intensity at a yearly frequency. This is confirmed by the results for long-differences,

where the coefficients for the R&D inputs are now substantially stronger and significant for the

case of the number of researchers. As was the case in our full sample, the significance of the patent

response is reduced when moving to the long-difference specification. In this case with a much

smaller sample, those coefficients for the patent response are no longer significant.
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Table 12: R&D survey

Dependent variable Regression in levels Regression in long differences

Innovation measure R&D budget Nb researchers Nb patents ∆R&D budget ∆Nb researchers ∆Nb patents
(1) (2) (3) (4) (5) (6)

Demand -1441.1 -17.67* -8.859*** -4228.2 -34.01** -6.506
(3015.6) (9.531) (3.340) (4279.9) (15.03) (4.242)

Decile × Demand 1072.7 4.181* 2.219*** 1541.8 8.554** 1.560*
(720.5) (2.321) (0.714) (1048.4) (3.438) (0.823)

Decile -97.65 0.657 0.0835
(173.3) (0.568) (0.102)

Nb of observations 20,030 20,662 21,480 1,746 1,713 1,827
R2 0.918 0.844 0.896 0.0112 0.0288 0.0301

Notes: This table presents regression results of an OLS estimation of equation 6 (columns 1-3) and 10 (columns 4-6). Sample includes manufacturing firms with
at least one patent in 1995-2012 and for which we can compute the export demand shock (see section 4.1); the sample is further reduced to pairs (firm, year) in the
R&D survey (columns 1-3) or to firms surveyed at least once in p0 and p1 in the R&D survey (columns 4-6). For the regressions in levels, coefficients and standard
errors are obtained using a panel fixed-effect estimator. Autocorrelation and heteroskedasticity robust standard errors using the Newey-West variance estimator with
a bandwidth set to 5 years. ***, ** and * respectively indicate 0.01, 0.05 and 0.1 levels of significance.

5 Conclusion

In this paper we analyzed the impact of export shocks on innovation for French firms. On

the one hand those shocks increase market size and therefore innovation incentives for all firms.

On the other hand they increase competition as more firms enter the export market. This in

turn reduces profits and therefore innovation incentives particularly for firms with low initial

productivity. Overall an export demand shock has a more positive effect on innovation in high

productivity firms, whereas it may negatively affect innovation in low productivity firms. We

tested this prediction with patent, customs and production data covering all French firms. To

address potential endogeneity issues, we constructed firm-level variables which respond to aggregate

conditions in a firm’s export destinations but are exogenous to firm-level decisions. We showed that

patenting robustly increases more with demand for initially more productive firms. This effect is

reversed for the least productive firms as the negative competition effect dominates. Moreover, we

showed that the positive interaction between a firm’s initial productivity and the export demand

shock is primarily driven by those export destinations where product market competition is highest.

This further confirms the fact that export demand shocks involve both, a market size and a

competition effect for French manufacturing innovators.

Our analysis can be extended in several directions. A first direction will be to use the same

data to explore the effect of imports on innovation, using the same comprehensive databases.

This would allow us to better understand why Bloom et al. (2016) and Autor et al. (2016) get
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opposite conclusions. A second direction would be to look at the impact of exports on the citations

to previous innovations, thereby shedding new light on the knowledge spillover effects of trade.

These await future research.
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Online Appendix for
“The Impact of Exports on Innovation: Theory and Evidence”

A Theoretical Appendix

A.1 Proof of Proposition 1

Uniqueness : in the (ĈD, λ) space, one can show that the (ZCP) condition is strictly downward-

sloping while the (FE) condition is strictly upward-sloping, ensuring uniqueness of the equilibrium

if such an equilibrium exists. More precisely: (a) an increase in competition from λ to λ + dλ

reduces the profit of firms with baseline cost ĈD(λ), so that those firms no longer operate; this

means that ĈD(λ+dλ) < ĈD(λ), which proves that the (ZCP) curve is strictly downward-sloping;

(b) an increase in competition from λ to λ+dλ reduces the profit of all firms (the envelope theorem

ensures that at the optimal innovation level ∂Π
∂k

= 0 so that dΠ
dλ

= ∂Π
∂λ
< 0); this in turn means that

ĈD has to strictly increase for the (FE) condition to hold, which proves that the (FE) curve is

strictly upward-sloping.

Existence: to prove the existence of an equilibrium, we show that the (FE) curve lies below the

(ZCP) curve for values of ĈD close to c̃0D, and that the (FE) curve ends up above the (ZCP) curve

for high values of ĈD. As ĈD becomes close to c̃0D, (ZCP) implies a value for λ which is positive

and bounded away from zero, whereas (FE) requires λ to become arbitrarily small, because the

integrand must go to +∞ for the integral over a very small interval to remain equal to FE
D . Next,

recall that the (ZCP) curve must remain below the λ = α

ĈD
curve. Given that α

ĈD
−→ 0 when

ĈD −→ +∞, the α

ĈD
curve must cross the (FE) curve at some point. At this point, the (ZCP)

curve lies below the (FE) curve.

A.2 Proof of Proposition 4

Proof. The first part of proposition 4 follows directly: for a given distribution of French firms

Γ and a given market size L in destination D, one can find cI and F small enough such that

C < ĈI < Ĉ, with C such that dQ
dL

(C) = 0. Importantly, the limit cases with cI = 0 or F = 0 have

a solution, which ensures that we can choose cI and F as small as possible to obtain a solution

verifying C < ĈI < Ĉ. When cI = 0, all firms innovate, because the first unit of innovation has a

zero cost. When F = 0 there is no operating cost, so that all firms with positive output actually

produce.
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Formally and after some algebra, we have:

C < ĈI ⇔ 2βcI
εαL

<
L
λ
dλ
dL

1 + L
λ
dλ
dL

ĈI < Ĉ ⇔ F <
c2
I

βε2Lλ
,

Because the elasticity of competition with respect to the market size exists when cI = 0 and is

positive (it is the ratio of the average profits over the average revenues, see below), we can choose

cI small enough that C < ĈI . Then and because λ exists and is strictly positive when F = 0, we

can choose F small enough that ĈI < Ĉ.

The second part is detailed below.

Differencing (FE) with respect to L yields:

∫ ĈD

c̃0D

πdΓD(c̃) = −L
∫ ĈD

c̃0D

∂π

∂λ

dλ

dL
dΓD(c̃)

⇒dλ

dL

L

λ
=

∫ ĈD

c̃0D

πdΓD(c̃)∫ ĈD

c̃0D

rdΓD(c̃)

= β

∫ ĈD

c̃0D

q2(c̃, k;λ)dΓD(c̃)∫ ĈD

c̃0D

q(c̃, k;λ) [α− βq(c̃, k;λ)] dΓD(c̃)

.

Innovation – or equivalently output or output holding k fixed – decreases for the marginal innovator

if and only if dλ
dL

L
λ
> α−ĈIλ

ĈIλ
(see equation (4)). Using the above value for the elasticity of competition

with respect to market size and after some algebra, output decreases for the marginal innovator if

and only if: ∫ ĉD

c̃0D

[
q(c̃, k;λ)− 2cI

εL

]
q(c̃, k;λ)dΓD(c̃) > 0. (11)

Given that q(ĈI , k;λ) = cI
εL

, the distribution ΓD must put enough weight on local firms with output

above twice the output of the marginal innovator.

B Data description

B.1 Patent data

Our first database is PATSTAT Spring 2016 which contains detailed information about patent

applications from every patent office in the world. Each patent can be exactly dated to the day of
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application, which is sometimes referred to as the “filing date”.

Counting patent applications Each French firm is associated with a number of patent appli-

cations by that firm each year (see section B.4). If the firm shares a patent with another firm, then

we only allocate a corresponding share of this patent to the firm. This raises the well-documented

issue of truncation bias Hall et al. (2005). Indeed as we come closer to the end of the sample,

we observe a smaller fraction of all patents since many of them are not yet granted 1 In addition,

there is a legal obligation to wait 18 months before publication in PATSTAT. With our version

of Spring 2016 this implies that we can assume the data to be reasonably complete up to 2012.

The sector-time fixed effects also deal with the truncation bias in our regressions. An alterna-

tive solution could be to use the year of granting instead of the year of application. However,

the former is less relevant than the latter as it is affected by administrative concerns and also by

potential lobbying activities that have little to do with the innovation itself. In order to be as

close to the time of the innovation as possible, we follow the literature and consider the filing date.

We consider every patent owned by a French firm, regardless of the patent office that granted

the patent rights. Here we need to be aware of the differences in regulations across intellectual

property offices. Some patent offices, especially those of Japan and Korea, offer less breadth to

a patent, which implies that more patents are needed to protect a given invention than in other

patent offices (see de Rassenfosse et al., 2013). Since we only consider French firms, this would

become an issue only if some French firms patent a lot in countries like Japan or Korea, in which

case the number of patents by such firms would be artificially large. To check that this problem

does not drive our results, we build different measures of patent counts as detailed below.

Different counts of patents The various indicators from PATSTAT used in the regressions are

described in detail below. All these indicators, based on different ways of counting or selecting

patents, have pros and cons and shed a different light on our analysis. As stated by de Rassenfosse

et al. (2013), it is virtually impossible to define a measure of innovation based on patents that is

immune to the various biases that are associated with such data.

Following the innovation literature, we always only select patents of invention (the bulk of

patents), thus dropping utility model and design patents.

• Number of patents: Each year, we sum over the patents filed by a firm f . When a patent

has other applicants than f , we only count the share that f represents among all the co-

1The time between patent application and patent granting is a little more than 2 years on average but the
distribution of this lag is very skewed with few patent applications still waiting for patent granting many years after
the application.

A-3



applicants (one third if f has 2 other applicants). This variable thus is a fractional count, as

most of the variables shown in the regressions.

• Triadic families: when the same invention is filed in different patent offices, in practice

the firm typically files for a different patent at each office, each referring to the first it has

filed (called priority patent): these patents relate to each other, they belong to the same

(DOCDB) family.2. Triadic families refer to such families with at least one patent filed at

the EPO, one patent filed at the USPTO, and one patent filed at either the Japanese, the

Chinese or the Korean Patent Office. We want to select innovations filed in the 3 main

economic regions worldwide (Europe, USA and Asia). We depart slightly from the literature

regarding the treatment of Asia: we do not want to consider Japan as the only relevant

country, but instead add the two main other innovating countries, China and Korea. Finally

the family is weighted with how much f contributes to it:
∑

k patents ∈ family

1f is applicant of k
nb applicantsk

nb patents in the family
. The

date of the family corresponds to the earliest filing year of the patents in this family.

• EPO families: The construction is very similar to that of the triadic families, except that

the family will be taken into account if there is at least one patent in it filed at the EPO.

• Dyadic families: The construction is very similar to that of the triadic families, except

that the family will be taken into account if there is at least one patent in it filed at the

EPO, and another filed at the USPTO.

• Families: The construction is very similar to that of the triadic families, except that we

take into account all the families containing a patent applied for by f .

• EPO*: We use the fractional count of the patents filed by firm f at the EPO.

• Raw number of patents: we use the (non-fractional) count of the number of patents filed

by firm f .

• Only Granted: We use the fractional count of the granted patents filed by firm f .

2The PATSTAT data catalog states that ”a large DOCDB family might indicate that the applicant seeks a wide
geographical protection for the invention”, and that ”if two applications claim exactly the same prior applications
as priorities (these can be e. g. Paris Convention priorities or technical relation priorities [. . . ], then they are defined
by the EPO as belonging to the same DOCDB simple family.”
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B.2 Firm-level accounting data

Our second data source provides us with accounting data for French firms from the DGFiP-

INSEE, this data source is called FICUS and FARE. The corresponding data are drawn from com-

pulsory reporting of firms and income statements to fiscal authorities in France. Since every firm

needs to report every year to the tax authorities, the coverage of the data is all French firms from

1994 to 2012 with no limiting threshold in terms of firm size or sales. This dataset provides us

with information on the turnover, employment, value-added, the four-digit sector the firm belongs

to . . . This corresponds to around 47 million observations and the number of observations per year

increases from 1.9m to 3.9m over the period we consider.

The manufacturing sector is defined as category C of the first level of the NAF (Nomenclature

d’Activits Franaise), the first two digits of which are common to both NACE (Statistical Classi-

fication of Economic Activities in the European Community) and ISIC (International Standard

Industrial Classification of All Economic Activities). Insee provides each firm with a detailed

principal activity code (APE) with a top-down approach: it identifies the 1-digit section with the

largest value added. Among this section, it identifies the 2-digit division with the largest value-

added share, and so on until the most detailed 5-digit APE code (INSEE (2016)). It is therefore

possible that another 5-digit code shows a larger value-added share than the APE identified, but

one can be sure that the manufacturing firms identified produce a larger value-added in the man-

ufacturing section than in any other 1-digit section, which is precisely what we rely on to select

the sample of most of our regressions. The 2-digit NAF sector, which we rely intensively on for

our fixed effects, then represents the most important activity among the main section of the firm.

Employment each year is measured on average within the year and may therefore be a non-integer

number.

A unique 9-digit identifier called Siren number is associated to each firm, this number is given

to the firm until it disappears and cannot be assigned to another firm in the future. When a

firm merges with another firm, or is acquired by another firm, or makes significant changes in its

organization, this number may change over time. Hence, new entrant Sirens in our database do

not necessary correspond to new firms.

B.3 Trade data

Customs data for French firms Detailed data on French exports by product and country of

destination for each French firm are provided by the French Customs. These are the same data

as in Mayer et al. (2014) but extended to the whole 1994-2012 period. Every firm must report its

A-5



exports by destination country and by very detailed product (at a level finer than HS6). However

administrative simplifications for intra-EU trade have been implemented since the Single Market,

so that when a firm annually exports inside the EU less than a given threshold, these intra-EU

flows are not reported and therefore not in our dataset. The threshold stood at 250 000 francs in

1993, and has been periodically reevaluated (650 000 francs in 2001, 100 000 euros in 2002, 150 000

euros in 2006, 460 000 euros in 2011). Furthermore flows outside the EU both lower than 1 000

euros in value and 1 000 kg in weight are also excluded until 2009, but this exclusion was deleted

in 2010.

Country-product bilateral trade flows CEPII’s database BACI, based on the UN database

COMTRADE, provides bilateral trade flows in value and quantity for each pair of countries from 1995

to 2015 at the HS6 product level, which covers more than 5,000 products. To convert HS products

into ISIC industries we use a United Nations correspondence table (when 1 HS code corresponds

to 2 ISIC codes, we split the HS flow in half into each ISIC code).

B.4 Matching

Our paper is the first to merge those three very large - patent, administrative, and cus-

toms - datasets covering exporting French firms. Merging administrative firm-level data from

FICUS/FARE and Customs data is fairly straightforward3 as a firm can be identified by its Siren

identifier in both datasets. Thus the main challenge is to match either of these two datasets

with PATSTAT. Indeed, PATSTAT only reports the name of the patent owner. Not only can this

name be slightly different from the name reported in the other two databases, but it may also

change over time, for example because of spelling mistakes. We thus relied on the work of Lequien

et al. (in progress) who developed a matching algorithm to map patents with the corresponding

French firms. The advanced methodology, described below, is a leap forward compared with other

methods proposed by the literature.

Lequien et al. (in progress) proceed in three main steps to merge PATSTAT and SIRENE:

1. For each Siren number from SIRENE, find a small subset of applicant firms in Patstat with

phonetic similarities:

• perform cleaning, splitting and phonetic encoding on firms’ name in both databases.

Too common words are deleted (THE, AND, CO, FRANCAISE . . . ).

3Although one must keep track of the different definitions of firms across these two datasets.

A-6



• sort each name by least frequent encoding in SIRENE. The more often a word appears

in the database, the less information it can convey to identify firms.

• for each SIRENE firm, the first (ie least frequent) cleaned word of the firm’s name is

compared with every PATSTAT name. All the PATSTAT names containing this word form

a first subset of possible matches. Then the second word of the firm’s name is compared

with every name in this subset, reducing it further. This procedure stops before arriving

at a null subset, and yields a set of likely PATSTAT matches for each SIRENE name. Very

often this set is null because the majority of firms do not patent. On average, this subset

contains 10 applicants, reducing a lot the computationally intensive comparisons.

2. Computation of parameters on these possible matches

• Comparison of the names (raw names, and cleaned names), using Levenshtein distances

and an inclusion parameter (all the words in one name are included in the name from

the other database)

• zip code comparison (code postal)

• date comparisons (a firm cannot have patented before its creation)

3. Matching with supervised learning

• Sample from INPI (Institut National de la Propriété Intellectuelle) with 15,000 true

matches between Siren number and PATSTAT person id (and in total 170,000 pairs, with

the corresponding known mismatches).

• This sample is randomly split into a learning sample and a verification sample (this

procedure is repeated 10 times, and the recall and precision measures are averaged over

them, so that the choice of the sample does not alter the results). This allows to choose

the relevant variables and estimate the parameters.

• apply this model on all the possible matches identified in the previous step.

• in 90% of cases, unique matching. In the remaining 10% of cases, filter further with

a decision tree (is the date of creation of the firm lower than the first filing of the

applicant?, which couple has the minimum Levenshtein distance between raw names,

between cleaned names, is one of the names included in the other?, which firm has the

maximum number of employees?)

The recall rate (share of all the true matchings that are accurate) is at 86.1% and the precision

rate (share of the identified matches that are accurate) is at 97.0%.
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B.5 Other data

We also use additional databases at the country level for our analysis. First we use the October

2015 vintage of the IMF’s World Economic Outlook which provides country information such

as GDP and population with a coverage as wide as possible. Second, to measure the level of

competition for each country, we use the “Doing Business” project, based on the work of Djankov

et al. (2002) and updated by the World Bank. Among all the available information, we consider

the “ease of starting a business” which is the variable with the largest spatial coverage. This is

a rating of all country for 0 to 100 that measures the constraints when one want to open a new

company in the country. Because most countries are not surveyed each year, we choose to take a

time invariant average value of this measure as our competition indicator.

B.6 R&D survey variables and sample

B.6.1 The survey

The annual survey on R&D expenses in firms exists since 1963. It describes the private sector

R&D in terms of financial means (spending and financing) and mobilized workers. It covers firms

established in France and doing R&D, and gathers information on previous year R&D activities.

Usually surveys on firms are sampled with the rpertoire Sirene, but this database has no infor-

mation on R&D activities to select firms that one would like to cover. firms with R&D activities

represent 1/200 among active firms in Sirene.

The Ministry of Higher Education and Research therefore selects firm according to the following

procedure:

1. The historical repertoire: All units having had a R&D activity are considered. This

repertoire is updated with the newest information from the previous survey: takeover, ab-

sorption . . . Firms answering they do not do R&D the year of survey but they might do some

the following year are kept in this sample.

2. External sources: Administrative files and surveys allow to detect new firms possibly

doing R&D: firms receiving the Crdit Impt Recherche, having the young innovating firm

status, receiving help from firms incubators, firms reporting R&D activities in other surveys

(Community Innovation Survey . . . )

3. Updating with Sirene cessations: Firms known as having shut down in Sirene are elim-

inated.
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4. Stratification:

• Firms with internal spending of R&D over 400 000 are exhaustively interrogated (and

above 2 million , they fill a bigger questionnaire).

• New firms (CIR, JEI . . . ) are exhaustively interrogated as well (but only since 2001,

see below).

• The rest stays only two years in a row in the panel: firms interrogated in N-1 and N-2

are excluded, those interrogated in N-1 are kept, and some newly selected firms are

drawn.

Main changes in the survey methodology

• 1992: reform leading to broadly the survey as it exists today. Most variables exist since 1992

or 1993.

• 2000: Increase of the threshold separating the simplified from the general questionnaire, from

5 million francs to 10 million francs. Some variables therefore are missing for firms that filed

the simplified questionnaire in 2000.

• 2001: New firms are all interrogated in the first year. Until 2000, only 1 in 2 new firm was

interrogated, the rest was kept for the following year.

• Change in units: in 1998, the answer is in francs and not in thousands francs anymore,

because many errors were seen. In 2004, the answer is in thousands euros and not in euros

anymore. After 2008, the answer is again asked in euros.

Some firms provide a “group” answer. Indeed for larger firms, R&D activity is more often organized

at the group level than at the legal unit level. A variable lists the legal units concerned, but only

after 2009.

B.6.2 The variables

• Total R&D Budget : total spending of a firm on R&D activities. It is the sum of internal

and external spending. One has to be careful, this variable can count twice contracts made

between two firms of the same group, once in internal spending and a second time in external

spending.

• of which Current spending : gross wages of R&D workers and general expenses (spending in

capital excluded), such as small tools, raw materials, administrative costs . . .
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• of which Gross wages of R&D workers. It includes all fiscal and social contributions.

• R&D workers : Researchers and technicians (support). in full time equivalent (prorata of

time spent in R&D activities, with a minimum of 10%).

• among which Nb of researchers : scientists and engineers working at creating knowedge,

products, processes, methods or new systems. It includes PhDs paid by the firm or high-

level staff responsible with animating the researchers’ teams. In full time equivalent.
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C Additional Empirical Results

Table B1 presents regression results of an OLS estimation of equation 6 replacing the innovation

left-hand-side with (the log of) total firm exports and dropping the export intensity from the

demand shock computation. We thus use the following unadjusted export demand variables (at

both the product Ms and industry MI level):

D̃Ms
ft =

∑
j,s

Xfjst0

Xft0

logMjst

D̃MI
ft =

∑
j,I

XfjIt0

Xft0

logMjIt.

We see that those unadjusted export demand variables very strongly predict a firm’s export

response (first two columns). On the other hand, there is no evidence for a skewness effect for that

export response – according to a firm’s proximity to frontier. Our theoretical model predicts that

the skewness effect evolves slowly over time as competition increases. The innovation response is

forward looking and captures this anticipated effect, whereas the export measure does not.

Table B1: Impact of the Demand shock on firm’s exports

Dependent variable log(Exports) log(Exports) log(Exports) log(Exports)

Demand Shock D̃Ms
f D̃MI

f D̃Ms
f D̃MI

f

(1) (2) (3) (4)

Demand 0.0419*** 0.0592*** 0.0334 0.0537**
(0.0135) (0.0164) (0.0228) (0.0260)

Decile × demand 0.00203 0.00135
(0.00396) (0.00453)

Nb of observation 72,380 72,416 72,380 72,416
R2 0.855 0.856 0.855 0.856

Notes: Sample includes manufacturing firms with at least one patent in 1995-2012 and for which we can compute

an the export demand shocks D̃Ms
ft and D̃

MI
ft . Coefficients and standard errors are obtained using a panel fixed-

effect estimator. Autocorrelation and heteroskedasticity robust standard errors using the Newey-West variance
estimator with a bandwidth set to 5 years. ***, ** and * respectively indicate 0.01, 0.05 and 0.1 levels of
significance.

Table B2 considers more aggregated (across industries and products) demand shock measure

using the GDP of destination j at t instead of world imports (excluding France) for a particular
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industry or product. Namely:

DG
ft =

X∗ft0
S∗ft0

∑
j

Xjt0

Xft0

logGDPjt.

Table B2: Other demand shock

Dependent variable All patents Triadic patents EPO patents

Demand measure DMs
ft DMs

ft DMs
ft

(1) (2) (3)

Demand -3.037** -0.217* -0.448**
(1.466) (0.119) (0.195)

Decile × Demand 0.852** 0.103*** 0.149***
(0.394) (0.0328) (0.0544)

Nb of observations 77,002 77,002 77,002
R2 0.891 0.753 0.838

Notes: This table presents regression results of an OLS estimation of equation 6. Sample
includes manufacturing firms with at least one patent in 1995-2012 and for which we can
compute an export demand shock DG

ft. Coefficients and standard errors are obtained using

a panel fixed-effect estimator. Autocorrelation and heteroskedasticity robust standard errors
using the Newey-West variance estimator with a bandwidth set to 5 years. ***, ** and *
respectively indicate 0.01, 0.05 and 0.1 levels of significance.

Table B3: Different trimming

Dependent variable All patents

Demand Measure DMs
ft DMs

ft DMs
ft DMs

ft DMs
ft DMs

ft

Trimming 2.5% (baseline) 0% 1% 2% 3% 5%
(1) (2) (3) (4) (5) (6)

Demand -3.260*** -0.751** -1.994*** -3.052*** -3.491*** -3.474***
(1.014) (0.305) (0.745) (0.925) (1.119) (1.256)

Decile × Demand 0.960*** 0.166** 0.510*** 0.842*** 1.065*** 1.086***
(0.255) (0.0816) (0.169) (0.227) (0.285) (0.327)

Nb of observation 77,901 82,043 80,378 78,722 77,077 73,784
R2 0.897 0.881 0.892 0.896 0.898 0.908

Notes: This table presents regression results of an OLS estimation of equation 6. Sample includes manufacturing firms with at
least one patent in 1995-2012 and for which we can compute the export demand shock (see section 4.1). Different trimming on
extreme variations of the Demand variable are done. Coefficients and standard errors are obtained using a panel fixed-effect estimator.
Autocorrelation and heteroskedasticity robust standard errors using the Newey-West variance estimator with a bandwidth set to 5
years. ***, ** and * respectively indicate 0.01, 0.05 and 0.1 levels of significance.significance.
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Table B4: Removing first years

Dependent variable All patents Triadic patents EPO patents

Demand Measure DMs
ft DMs

ft DMs
ft DMs

ft DMs
ft DMs

ft

Years removed t < t0 + 2 t < t0 + 3 t < t0 + 2 t < t0 + 3 t < t0 + 2 t < t0 + 3
(1) (2) (3) (4) (5) (6)

Demand -2.703*** -2.378** -0.233*** -0.203*** -0.339*** -0.321**
(1.003) (0.938) (0.0788) (0.0733) (0.129) (0.129)

Decile × Demand 0.811*** 0.654*** 0.0752*** 0.0620*** 0.112*** 0.0896***
(0.249) (0.229) (0.0194) (0.0172) (0.0298) (0.0292)

Nb of observation 72,265 66,684 72,265 66,684 72,265 66,684
R2 0.911 0.920 0.763 0.763 0.870 0.885

Notes: This table presents regression results of an OLS estimation of equation 6. First years following t0 are excluded from the
estimation. Sample includes manufacturing firms with at least one patent in 1995-2012 and for which we can compute the export
demand shock (see section 4.1). Coefficients and standard errors are obtained using a panel fixed-effect estimator. Autocorrelation
and heteroskedasticity robust standard errors using the Newey-West variance estimator with a bandwidth set to 5 years. ***, **
and * respectively indicate 0.01, 0.05 and 0.1 levels of significance.

Table B5: Baseline results - Clustered standard errors

Dependent variable All patents Triadic patents EPO patents

Demand measure DMs
ft DMI

ft DMs
ft DMI

ft DMs
ft DMI

ft

(1) (2) (3) (4) (5) (6)

Demand -3.260** -2.578* -0.265** -0.224** -0.368** -0.447**
(1.475) (1.530) (0.115) (0.112) (0.168) (0.200)

Decile × Demand 0.960*** 0.909** 0.0859*** 0.0862*** 0.125*** 0.114**
(0.372) (0.444) (0.0287) (0.0327) (0.0397) (0.0554)

Nb of observation 77,901 77,918 77,901 77,918 77,901 77,918
R2 0.897 0.888 0.759 0.747 0.849 0.836

Notes: This table presents regression results of an OLS estimation of equation 6. Sample includes manufacturing firms
with at least one patent in 1995-2012 and for which we can compute the export demand shock (see section 4.1). Coefficients
and standard errors are obtained using a panel fixed-effect estimator. Heteroskedasticity robust standard errors clustered
at the firm level ***, ** and * respectively indicate 0.01, 0.05 and 0.1 levels of significance.
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Table B6: Poisson regressions

Dependent variable All patents Triadic patents EPO patents

Demand measure DMs
ft DMs

ft DMs
ft

(1) (2) (3)

Demand -0.652*** -0.937*** -0.466*
(0.208) (0.360) (0.246)

Decile × Demand 0.127*** 0.164*** 0.103***
(0.0292) (0.0481) (0.0336)

Nb of observations 73,488 18,410 47,648

Notes: This table presents regression results of a Poisson estimation of equation 7. To
obtain integer dependent variables, we do not use the fractional count (using these integer
number with OLS has negligible effects) . Coefficients and standard errors are obtained using a
maximum likelihood estimator. Autocorrelation and heteroskedasticity robust standard errors
using the Newey-West variance estimator with a bandwidth set to 5 years. Sample includes
manufacturing firms with at least one patent in 1995-2012 and for which we can compute the
export demand shock (see section 4.1). ***, ** and * respectively indicate 0.01, 0.05 and 0.1
levels of significance.

Table B7: Excluding leaders

Dependent variable All patents Triadic patents EPO patents

Demand measure DMs
ft DMI

ft DMs
ft DMI

ft DMs
ft DMI

ft

(1) (2) (3) (4) (5) (6)

Demand -2.820*** -2.730** -0.251*** -0.219*** -0.357*** -0.482***
(0.970) (1.074) (0.0838) (0.0849) (0.122) (0.145)

interac 0.766*** 1.246*** 0.0790*** 0.104*** 0.122*** 0.181***
(0.239) (0.318) (0.0199) (0.0244) (0.0296) (0.0405)

Nb of observation 77790 77806 77790 77806 77790 77806
R2 0.897 0.887 0.751 0.748 0.846 0.835

Notes: This table presents regression results of an OLS estimation of equation 6. Sample includes manufacturing firms with at
least one patent in 1995-2012 and for which we can compute the export demand shock (see section 4.1). The Demand variable
does not include country j and products s for a firm f with a market share above 10% for the pair (j, s). Coefficients and
standard errors are obtained using a panel fixed-effect estimator. Autocorrelation and heteroskedasticity robust standard errors
using the Newey-West variance estimator with a bandwidth set to 5 years. ***, ** and * respectively indicate 0.01, 0.05 and
0.1 levels of significance.
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